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A qubit can relax by fluorescence, which prompts the release of a photon into its electromagnetic
environment. By counting the emitted photons, discrete quantum jumps of the qubit state can be ob-
served. The succession of states occupied by the qubit in a single experiment, its quantum trajectory,
depends in fact on the kind of detector. How are the quantum trajectories modified if one measures
continuously the amplitude of the fluorescence field instead? Using a superconducting parametric
amplifier, we have performed heterodyne detection of the fluorescence of a superconducting qubit.
For each realization of the measurement record, we can reconstruct a different quantum trajectory
for the qubit. The observed evolution obeys quantum state diffusion, which is characteristic of
quantum measurements subject to zero point fluctuations. Independent projective measurements
of the qubit at various times provide a quantitative validation of the reconstructed trajectories. By
exploring the statistics of quantum trajectories, we demonstrate that the qubit states span a deter-
ministic surface in the Bloch sphere at each time in the evolution. Additionally, we show that the
sole monitoring of fluorescence can generate coherences out of classical states. Counterintuitively,
measuring light emitted during relaxation can give rise to trajectories with increased excitation
probability.

I. INTRODUCTION

The quantum properties of an open system are pre-
served as long as no information about its state is lost
into unmonitored degrees of freedom [1]. For a qubit,
the mere possibility to emit a photon by spontaneous
emission can lead to decoherence. When discarding the
information carried by the emitted field, the imperfectly
known qubit state is described by a density matrix, which
evolves continuously towards the ground state. If instead
an observer monitors the fluorescence light emitted by
the qubit, the lost information is retrieved. The succes-
sion of states occupied by the qubit then depends on the
particular realization of the random measured record and
deviates from the average one [2–4].

Peculiar to quantum mechanics, this quantum trajec-
tory depends on the type of detection. In case of pho-
tocounting, the qubit undergoes discrete quantum jumps
as already observed on single ions in the 1980’s [5–7]. In
contrast Wiseman and Milburn showed in 1992 that het-
erodyne measurement of fluorescence should lead to con-
tinuous quantum state diffusion [8, 9]. Here, we perform
such a measurement on a superconducting qubit using
a phase-preserving parametric amplifier [10, 11], which
ensures an overall measurement efficiency η = 24 % for
the qubit relaxation channel. Without drive and start-
ing from an initially pure state, we demonstrate that
the qubit state evolves erratically towards the ground
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state |g〉, in agreement with quantum state diffusion [9].
The validity of the obtained quantum trajectories is ver-
ified using an independent tomographic measurement.
Counterintuitively, the sole monitoring of relaxation can
temporarily increase the probability amplitude of excita-
tion [12]. It can also generate coherences out of classical
states, which is in contrast with the recently observed
quantum trajectories based on quantum non demolition
measurement of the qubit [13–17].

In the experiment sketched in Fig. 1a, the qubit under
monitoring is a transmon resonating at fq = 6.37 GHz. It
is dispersively coupled to a 3D bulk copper cavity [19, 20],
which serves two purposes. First, it channels most of the
emission coming from qubit relaxation into a dominantly
coupled output transmission line [21]. The qubit decay
rate is measured to be γ1 = (4.15 µs)−1. Second, it can be
used to perform a projective readout of the qubit [18, 22]
that will be used as a validation of the quantum trajec-
tories in section III. At time t = 0, the qubit is prepared
either in the excited state |e〉 or in |+x〉 = 1√

2
(|g〉+ |e〉).

This is done by applying a rotation pulse (Fig. 1b) on
the qubit initially at equilibrium, where its excitation is
below 1 % consistently with dilution refrigerator temper-
atures. The qubit is then left to decay while heterodyne
detection of the fluorescence field is performed on the
output line using a high efficiency detection setup based
on a Josephson Parametric Converter (JPC) [11, 18, 23].
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Figure 1: Scheme of the experiment. a) The fluorescence
field of a superconducting qubit in an off-resonant cavity is
recorded using a heterodyne detection setup from time 0 to
T . Following amplification by a Josephson Parametric Con-
verter (JPC), the signal is downconverted to fh = 100 MHz
and numerically demodulated and integrated on time steps
dt = 200 ns into its two quadratures dI and dQ. The rect-
angular symbols represent the correction of finite detection
bandwidth in the setup [18]. The quantum trajectory {ρt}
is then computed using Eq. (2). A single local oscillator at
fq + fh is used for qubit manipulation and downconversion of
the fluorescence signal. The transmission at cavity frequency
fc = 7.8 GHz is used to independently readout the qubit at
time T [18]. b) Pulse sequence. At time 0, the qubit is pre-
pared in | + x〉 (resp. | + e〉) with a 52 ns (resp. 104 ns)
rotation pulse around σy. The fluorescence record is acquired
for a duration T ranging from 0 to 10 µs. The state is then
projectively readout along one of the three Pauli operators
using a pulse at frequency fc preceded by a rotation pulse
around σy, σx, or no pulse.

II. COMPUTING QUANTUM TRAJECTORIES
FROM HETERODYNE MEASUREMENT OF

FLUORESCENCE

Previous experiments on superconducting circuits have
shown that the fluorescence field contains a footprint of
the qubit state [24–27]. Indeed, the integrated outputs
dIt and dQt of an heterodyne detector between times
t and t + dt are on average proportional to 〈σx〉ρt =
Tr(ρtσx) and 〈σy〉ρt respectively, where ρt is the density
matrix of the qubit and σx,y,z the Pauli operators. In
the inset of Fig. 2a is shown in blue the average of 3 mil-
lions measurement records {dIt,dQt}0<t<T for a qubit
starting in | + x〉. As expected, the quadrature dIt de-
cays exponentially at a rate γ1/2 + γφ while the quadra-
ture dQt is zero. We note that the pure dephasing rate
γφ ≈ (35 µs)−1 is measured to be much smaller than γ1.
Two individual measurement records are shown in Fig. 2a
for a qubit starting in |+x〉 and in Fig. 2c when starting
in |e〉. They are fluctuating with a much larger amplitude
than the average signal. This noise originates both from
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Figure 2: Quantum trajectories. a) Each panel displays
two different measurement records of one quadrature of the
fluorescence field for a qubit initially in |+x〉. Actual measure-
ments are shown as red and green dots linked by straight lines
for clarity. The blue dots correspond to the average record
on all experiments, and the blue line corresponds to an expo-
nential fit of these dots in e−γ1t/2−γφt. A zoom in is shown
as an inset. b) Quantum trajectories followed by the qubit
under relaxation represented in the Bloch sphere for the mea-
surement records shown in Fig. 2a. The Bloch vector (x, y, z)
corresponds to the state ρ = (1 + xσx + yσy + zσz)/2 and
the black circles set the scale of the Bloch sphere extrema.
The trajectories are obtained by solving numerically Eq. (2)
and are shown as dots linked by straight lines both in the
sphere and in the three projections along x, y and z. Colors
identify which record of Fig. 2a is used. A blue line shows
the average evolution without monitoring (η = 0). c,d) Same
representations for two realizations starting from |e〉. They
were arbitrarily selected to end up in a state with similar
Bloch coordinate xtraj = 0.42± 0.02 as indicated by a dashed
red line.

zero point fluctuations of the detected field quadratures,
which contain information on the qubit state, and from
imperfections of the detection setup. The relative contri-
bution of the first one is characterized by the efficiency
η. Using the record {dIt,dQt}0<t<T and the initial state
ρ0, one can reconstruct a quantum trajectory {ρt} over
the time T . The density matrix ρt is here conditioned
to the knowledge of the initial state at time 0 and of the
fluorescence record between 0 and t.

Mathematically, the measurement records can be de-
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composed as [3]{
dIt =

√
ηγ1
2 〈σx〉ρtdt+ dWI,t

dQt =
√

ηγ1
2 〈σy〉ρtdt+ dWQ,t

. (1)

where dWI,t and dWQ,t are the random fluctuations be-
yond the expected average value. The signals are nor-
malized so that the variance of dIt and dQt is directly
dt. The overall efficiency η = 24 % is determined using a
max-like method [28]. It is limited by both the extra re-
laxation mechanisms that do not lead to emission into the
output line and limited efficiency of the detection setup.
The evolution of the density matrix can be inferred from
these measurement records using the following Stochas-
tic Master Equation. In the frame rotating at fq, and
without qubit drive, it reads [3, 29]

dρt = (γ1 D[σ−]ρt + γφ/2 D[σz]ρt) × dt

+
√
ηγ1/2M[σ−]ρt × dWI,t

+
√
ηγ1/2M[iσ−]ρt × dWQ,t,

(2)

using the Lindblad D[L]ρ = LρL†− 1
2L
†Lρ− 1

2ρL
†L and

measurementM[L]ρ = (L−〈L〉ρ)ρ+ρ(L−〈L〉ρ)† super-
operators and the lowering operator σ− = |g〉〈e|.

When fluorescence is not monitored, which can be
modeled by setting the measurement efficiency to zero,
the qubit state dynamics is captured by the determin-
istic Lindblad terms. The first one corresponds to the
average effect of relaxation, while the second one models
pure dephasing and is almost negligible here. The corre-
sponding evolution of the Bloch vector is plotted in blue
in Figs. 2b,d.

By monitoring fluorescence during relaxation (η > 0),
the observer retrieves part of the information lost in the
environment. The acquired information is injected in
Eq. (2) solely via the noise terms dWI,t and dWQ,t. The
associated stochastic quantum backaction is captured by
M[σ−] andM[iσ−] of Eq. (2) (see [18, 30] for a graphi-
cal representation of backaction in the Bloch sphere). It
is then possible to reconstruct the quantum trajectory
of the qubit corresponding to a measurement record. In
practice, we choose a time step dt = 200 ns close to the
autocorrelation time induced by the finite bandwidth of
the detection setup [18]. This limited sampling rate still
enables an accurate estimation of the trajectory using a
discrete time version of Eq. (2) [18, 31, 32]. The quantum
trajectories originating from the measurement records in
Fig. 2a,c are represented in Fig. 2b,d. They present an
erratic behavior coming from the randomness of the mea-
surement backaction yet eventually converge towards |g〉
(south pole). This is similar to a random walk in the
Bloch sphere with a step size that decreases to zero as
the state approaches |g〉. Strikingly, the trajectories dif-
fer from the average one owing to a large enough mea-
surement efficiency η = 24 %. If the detection was ideal
(η = 1) and without pure dephasing, the state would
remain pure and the Bloch vector would evolve stochas-
tically on the surface of the Bloch sphere.

b)a)

d)c)
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Figure 3: Tomography versus quantum trajectories. a)
For each value of xtraj, a red dot indicates the average value
xtomo of the final measurement of σx on the subset of ex-
periments starting from | + x〉 and for which the quantum
trajectory ends up at time T = 4 µs in a state such that
〈σx〉ρT = xtraj ± 0.02. Error bars represent the statistical
uncertainty and the solid line has a slope 1. Subsets with less
than 40 experiments are not shown. The final projective mea-
surement infidelity is corrected for [18]. Similar dots represent
the case of y (blue) and z (green). b) Distribution of the final
Bloch coordinate itraj of the 106 quantum trajectories start-
ing in | + x〉 for T = 4 µs, and followed by a σi projective
measurement. The color code and the bin width match those
in Fig. 3a. c-d) Same as a-b for experiments starting in |e〉.

III. VALIDATION OF THE QUANTUM
TRAJECTORIES BY INDEPENDENT

MEASUREMENTS

Using Eq. (2), we are able to reconstruct the quantum
trajectories corresponding to an initial state at time 0
and a fluorescence record between 0 and T . By nature,
the final state ρT encodes the statistics of any measure-
ment that would take place at time T . In order to test
the pertinence of this prediction, independent measure-
ments are performed for T ranging from 1 to 10 µs. A
projective measurement of the qubit is thus performed,
following a π/2 pulse around σy or around σx, or no pulse
at all (Fig. 1b). The experiment is repeated one million
times for each final measurement of σx, σy or σz, for each
preparation and for each final time T .

In the case of a final measurement of σx, we then se-
lect the subset of all the realizations whose final pre-
dicted Bloch coordinate 〈σx〉ρT ends up within 2 % of
a given value xtraj. The test then consists in compar-
ing xtraj to the mean value xtomo of the final σx mea-
surement outcome on that subset. The tomography re-
sults match the predictions of Eq. (2) as can be seen
in Fig. 3a, where we plot in red xtomo as a function of
xtraj for the T = 4 µs-long trajectories starting in |+ x〉.
Similar measurements are shown for the σy and σz mea-
surements in the same figure. The error bars represent
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Figure 4: Statistics of quantum trajectories. Distributions of the qubit states along 10 µs-long trajectories for a qubit
initially in | + x〉 (a) and |e〉 (b). The number of trajectories reaching each cubic cell of side 0.04 is encoded in color, out of
a total of 3 millions. White arrows go from −1 to +1 along σx,y,z and the Bloch sphere is colored in gray. Meridians of the
spheroid spanned by Eq. (5) are also shown.

the statistical uncertainty on xtomo corresponding to the
limited number of selected realizations for a given xtraj
plotted in Fig. 3b [18]. The same verification is realized
on experiments starting from |e〉 (Figs 3c,d). Slight con-
stant offsets between the predicted (traj ) and tomogra-
phy (tomo) values appear. The fact that these offsets are
larger when the qubit starts in |e〉 than in |+x〉 indicates
that they originate from systematic errors in the initial
qubit preparation. Note that there is no fit parameter
in the model beside η [28]. The agreement between the
states reconstructed using the fluorescence signal and the
ones measured through tomography is also good for all
other considered times T (not shown here).

IV. STATISTICS OF QUANTUM
TRAJECTORIES

Now that the approach is validated, the experiment
can be used to probe the statistics of quantum trajec-
tories. Fig. 3b,d represent the distribution of predicted
states at time T = 4 µs. The average of each Bloch co-
ordinate matches its expected value after a relaxation of
4 µs. The spread of the distributions comes from mea-
surement backaction. Starting from |e〉 (Fig. 3d), the
qubit state has no defined initial phase, and this sym-
metry is preserved: 〈σx〉ρT and 〈σy〉ρT remain 0 on av-
erage. However, at the single realization level, coher-
ences develop in time by spontaneous symmetry break-
ing due to the inherent randomness of the measurement
process. This is in sharp contrast with the quantum tra-
jectories obtained by continuous dispersive measurement
of σZ [13] when starting from a classical state.

The statistics of quantum trajectories can be better un-
derstood in the Bloch sphere representation. In Fig. 4, is
represented the distribution of the qubit states at various

times t for 10 µs-long trajectories, for a qubit starting in
| + x〉 (a) or |e〉 (b). Starting from a single point, the
state distribution progressively spreads out and collapses
down to |g〉 at long times. Note that at the first times in
the evolution, the distribution spread in the Bloch sphere
is larger when starting from |e〉 than from | + x〉. This
illustrates that the measurement backaction associated
with spontaneous emission is as strong as the qubit exci-
tation is large. Strikingly, at each time in the evolution,
all quantum states seem to belong to the same shell in
the Bloch sphere, independently of the initial state.

An analytical expression of this surface can in fact be
derived when neglecting dephasing (γφ = 0 in Eq. (2)).
Let us introduce the variable

α = 1 +
1

2

SL
p2e
≥ 1, (3)

where, SL = 1 − Tr(ρ2t ) is the linear entropy and pe =
(1 + 〈σz〉ρt)/2 is the probability to find the qubit ex-
cited. It can then be shown [18] that α(t) evolves de-
terministically, independently of the heterodyne fluores-
cence record, following

α(t) = η + (α(0)− η)eγ1t. (4)

Remarkably, the qubit state does not diffuse stochasti-
cally in the volume of the Bloch sphere. Rather, it is
restricted to the surface determined by the value α(t)
whose characteristic equation reads

α(x2 + y2) + α2(z + 1− 1

α
)2 = 1. (5)

The surface is thus a spheroid going through the south
pole of the Bloch sphere |g〉. Starting from a pure state
at α = 1, the spheroid shrinks from the Bloch sphere it-
self towards the south pole as α rises in time. As shown
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in Fig. 4, it is in good agreement with the measured dis-
tributions. The small thickness [18] of the shell in Fig. 4
originates from pure dephasing alone. Note that in the
ideal case η = 1, the trajectories would evolve on the
sphere as α(t) = 1 is then constant.

On the spheroid, the evolution is still stochastic and
depends on the particular realization of the heterodyne
measurement of fluorescence. Yet, it is possible to
identify integral quantities of the measured quadratures
{dIt,dQt} alone that relate directly to the position on
the spheroid, hence avoiding to solve numerically Eq. (2).
For that purpose, the position of a state on the spheroid
is parametrized by the variables ξx(t) =

〈σx〉ρt
〈σz〉ρt+1 and

ξy(t) =
〈σy〉ρt
〈σz〉ρt+1 . We show that [18]{

ξx(t) = ξx(0)e
γ1t/2 +

√
ηγ1
2

∫ t
0
eγ1(t−τ)/2dIτ

ξy(t) = ξy(0)e
γ1t/2 +

√
ηγ1
2

∫ t
0
eγ1(t−τ)/2dQτ

. (6)

These expressions can be tested using the same tomog-
raphy measurements as in Fig. 3 and lead to a similar
agreement [18].

For some trajectories in Fig. 4a starting from | + x〉,
the probability for the qubit to be excited increases in
time as 〈σz〉ρT temporarily takes positive values. This is
counterintuitive as the average energy increases for a sub-
set of experiments that can be postselected based on the
field emitted during decay [12]. This observation makes
explicit the inadequacy of a reasoning in terms of emitted
photons in the case of heterodyne or homodyne detection.
In contrast, any signal detected by a photo counter would
be associated with decreasing qubit energy. A trajectory
with increasing 〈σz〉 is shown in Fig. 2a and results from
a measurement record that starts with negative values of
dIt over some time interval while the qubit state is still
close to |+ x〉.

V. CONCLUSION

Quantum state diffusion was first introduced as a de-
scription of what an open quantum system undergoes

from the viewpoint of its environment [8]. This exper-
iment, which implements the proposal of Wiseman and
Milburn in 1992 [3, 9], illustrates how it can in fact be
understood as the dynamics of a system conditioned to
a continuous measurement record. In that respect, it
provides new insight about how to understand relax-
ation and decoherence. The use of a Josephson Para-
metric Converter was instrumental in order to reach a
high enough measurement efficiency so that measure-
ment backaction is visible and quantum trajectories de-
part from their average. Importantly, it was possible to
validate the reconstructed quantum trajectories by an in-
dependent quantum state tomography. The experiment
thus demonstrates how the sole continuous monitoring of
a relaxation channel can lead to various quantum states
and even produce superpositions of classical ones. It
opens the way to experiments in which the field emit-
ted during relaxation is used as an input of a feedback
controller able to stabilize any state of a qubit [30]. This
would complement the toolbox of quantum error correc-
tion, which is key to the development of quantum com-
puting. Finally, the possibility to observe statistics of
quantum trajectories should lead to interesting perspec-
tives in the field of thermodynamics of quantum infor-
mation.
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