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EXPERIMENTAL SETUP

Cabling

Readout and drive pulses are generated by single side-band modulation of two continuous microwave tones produced
by microwave generators set respectively at ωr/2π+ 62.5 MHz and ωeg/2π+ 125 MHz. The modulation is performed
by mixing these tones with arbitrary shaped waveforms synthesized by a 4 channels Tektronix Arbitrary Waveform
Generator. The FPGA board is a Triton-V5 VXS board by Tekmicro with one 10-bit deep input at 2.2 GSps and one
12-bit deep output at 4 GSps and the FPGA itself is a Xilinx Virtex-5. All sources are synchronized by an atomic
clock, which also synchronizes the trigger of the waveform generator and the clock of the FPGA board. Both pulses
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FIG. S1: Schematics of the experiment
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are combined and sent towards the weakly coupled input port of the 3D aluminum cavity through an input line which
is thermalized and attenuated with cryogenic attenuators at each stage of the dilution refrigerator, ensuring that only
negligible thermal excitations enter the device (see Fig. S1). In particular, we took special care in terms of filtering,
in order to ensure the lowest qubit thermal excitations. A commercial K&L low-pass clean-up filter of 12 GHz cut
off frequency is used at the still stage (850 mK), while a home made low pass filter consisting in a microstrip line
enclosed in a light tight box filled with Ecosorb (by Emerson & Cummings) is inserted at base temperature. Note that
a similar line, denoted as ”JPC probe” in Fig. S1, has been set up to probe the Josephson mixer, and was also used to
calibrate the input and output coupling rates to the cavity κin/2π = 0.34 MHz and κout/2π = 1.49 MHz. Note that
the internal loss rate is known to be of the order of 20 kHz which is negligible. Finally, the transmon aluminium 3D
cavity is enclosed, following [1, 2], in a light tight copper box thermally anchored to the 20 mK stage. Its inside walls
are all covered by a black coating consiting in 1 mm diameter SiC grains (from Saint-Gobain) mixed up in Ecosorb.

Two cryogenics circulators in series are used to direct the readout signal from the cavity to the Josephson mixer. A
cryoperm magnetic shield encloses the Josephson mixer and its biasing coil (not shown). Being reflected amplified, the
output signal is routed back towards a commercial HEMT amplifier of 40 dB gain from Caltech University, isolated
with a bias-tee and two circulators in series. The output signal is further amplified at room temperature, mixed down
by ωr, and amplified on a 125 MHz bandwidth. Its amplitude and phase are finally computed by an FPGA board
by numerical demodulation at 62.5 MHz. Finally, by simply adjusting the phase of the modulation of the readout
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FIG. S2: Gain of the JPC as a function of frequency.

tone compared to the fixed phase of the numerical heterodyning, it is possible to align the two qubit pointer states
symmetrically compared to the out-of-phase axis (see. main text Fig. 1) and thus measuring the probability of the
outcome Im(a) > 0 (resp. Im(a) < 0) corresponding to the qubit in the ground state (resp. excited).

The Josephson amplifier gain was measured by turning ON and OFF the pump of the JPC. A slight shift (0.43 MHz)
between the resonance frequencies of the cavity ON and OFF is likely due to imperfect isolation between the JPC
and the cavity through the two circulators. A slight deterioration of coherence time due to turning on the JPC was
observed in a previous similar experiment (unpublished). We therefore turn ON the JPC only during measurement
times.

Feedback delay

The FPGA board is a Tekmicro Triton-V5 board. Here, we decompose in time the various steps (see Fig. S3)
contributing the total feedback delay of about 480 ns.

• 120 ns: Delay of propagation between the output of the Digital to Analog Converter (DAC) and the input of the
Analog to Digital Converter (ADC) of the Triton board, when going through the cavity of the 3D Transmon.
This time interval corresponds to the total electric delay of the setup.

• 180 ns: Delay of the transfer between the ADC and the FPGA itself plus the transfer between the FPGA and
the DAC. This delay originates from the synchronization between the FPGA clock and the ADC/DAC clocks
along the transfer. This time may be diminished at the expense of reliability.
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FIG. S3: Illustration of the delays added by the various steps of the feedback loop (see text).

• 160 ns: Time taken in order to finish the integration of the numerically demodulated signal after the last data
sample has reached the FPGA. At the end of this delay, the averaged quadratures (non renormalized by the
measurement duration) are calculated, and a bit is dedicated to the decision to apply a correcting pulse through
the DAC or not.

• 16 ns: Time taken by the FPGA to send a pulse to the DAC depending on the decision bit.

READOUT CALIBRATION

Field amplitude inside the cavity

It is possible to calibrate in situ the amplitude of the field inside of the cavity during readout. When κ ≈ 2χ, the
most reliable way to do this consists in using the measurement induced dephasing rate due to the presence of a field
in the cavity. Indeed, this measurement induced dephasing rate is given by [3, 4]

Γm =
κtot

2
|αg − αe|2, (1)

where κtot = κin + κout and αg (resp. αe) is the state of the cavity mode when the qubit is in state |0〉q (rep. |1〉q).
For a constant input readout power Pin at frequency ωr + δω, they read [5]

αg = µ

√
Pin

κtot − i(2δω − 2χ)
and αe = µ

√
Pin

κtot − i(2δω + 2χ)
, (2)

where µ is the prefactor which needs to be calibrated.
We performed a series of Ramsey fringes measurements while varying the power Pin of an incoming pulse at the

readout frequency during the free equatorial evolution. Starting from an empty cavity, we apply a fast π/2 pulse
(64 ns) compared to decoherence. Then, 50 ns after this rotation, a pulse 1200 ns long, with the same envelope as
the one used for reading out the qubit state in the experiment, is sent at frequency ωr + δω with an incoming power
Pin. Then, 2300 ns after the first π/2 pulse, a second pulse, phase detuned by φ from the first, is sent to rotate the
qubit again. Finally, a readout pulse measuring the state of the qubit starts 50 ns after the last rotation.

This last measurement allows us to measure 〈σZ(φ)〉 which is a cosine function of the phase φ

〈σZ(φ, Pin)〉 = A+B(Pin) cos(φ− ϕ(Pin)). (3)

Calling the effective measurement time Teff ≈
∫∞
−∞

|α|2(t)
|αs|2 dt, αs being the stationary limit of the field amplitude α in

the cavity. We then have the useful relations

B(Pin) = B(0)e−ΓmTeff and ϕ(Pin) = ϕ(0) + ∆ωStarkTeff . (4)
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FIG. S4: (top) Dots: Measurement induced dephasing rate Γm scaled by the power of the incoming readout, which is referred
to the power used for the actual readout pulses in the letter. The dephasing rate is deduced from the decay of Ramsey fringes
obtained when a readout pulse, with the same duration as in the actual experiment, occurs between the two phase tuned π/2
pulses on the qubit used for the Ramsey sequence. The contrast of the fringes is proportional to e−ΓmTeff where the dressing

power changes, with Teff ≈
∫∞
−∞

|α|2(t)

|αs|2
dt, αs being the stationary limit of the field amplitude α in the cavity. The measurements

were performed for powers indicated by color according to the color bar. Line: theoretical expectation for the same quantity
assuming a stationary number of photons equal to 1.4. (bottom) Dots: Detuning of the qubit frequency measured from the
phase change of the same Ramsey fringes. Line: theoretical expectation for the same quantity assuming also 1.4 photons in
the stationary limit.

On Fig. S4, we extracted the corresponding Γm and ∆ωStark scaled down by the power in units of the power used
for the actual readout in the experiment, as a function of detuning δω for several powers ranging from Pin = 0
to Pin = 0.2P readoutin . Using the above expressions, it is easy to fit the experimental curves of Fig. S4 with µ =

19 rad.s−1/
√
P readoutin as a single fit parameter. We hence find a photon number during readout of |αg|2 = |αe|2 ≈ 1.4.

According to Ref. [5], the AC-Stark shift, corresponding to the qubit frequency shift due to the irradiation of the
cavity is given by

∆ωRamsey = −2χRe(αeα
∗
g) = −2µ2Pinχ

κ2 − 4χ2 + δω2

(κ2 + 4χ2 − δω2)2 + 4δω2κ2
. (5)
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In the experiment, we perform readout pulses at δω = 0 and it is interesting to note that the Stark shift goes to zero
when 2χ ≈ κ such as in our experiment. The measured AC-Stark shift is consistent with this law except close to
δω = 0 where the shift is not linear in power (see spread of data on Fig. S4).

Detection efficiency

The efficiency ηtot of the detection chain can be determined from the variance of the complex field amplitude
measured when the qubit is in state |0〉q. The complex amplitude of each measurement pulse is determined by averaging
over a measurement time Tmeas = 960 ns. Indeed, the measurement can be decomposed as Nm = Tmeasκtot = 11.0
temporal modes of |αg|2 = 1.4 photons each. Therefore, in the units of Fig. 1 (from main text) where the averaged
field amplitude is given by αg, the variance of the measured amplitude is

Var(a) =
1

Nmηtot
. (6)

Note that this can be written also in terms of the real and imaginary parts of the field amplitude (each of variance
1/2 per temporal mode for ηtot = 1) as

Var(Re a) + Var(Im a) =
1

Nmηtot
. (7)

At thermal equilibrium, the qubit is found in the ground state with a probability 98%, so that it is a very good
approximation to calculate the efficiency by neglecting the other 2% events. We find Var(a) = 0.13 and thus,

ηtot = 0.67 (8)

A large part of the inefficiency is coming from the rather large input coupling rate. Therefore ηtot = ηoutηdet where
the efficiency of the extraction of radiation by the output is ηout = κout

κin+κout
= 0.81 and the efficiency of the detection

setup is thus ηdet = 0.82. Note that the quantum limited efficiency for the phase preserving detection setup is

η
(QL)
det = 100 %. The extra loss in efficiency beyond this quantum limit can be explained by an attenuation of a few

dB between the cavity and the amplifier coming from insertion losses in the setup.

READOUT ERROR AND QUBIT THERMAL EQUILIBRIUM POPULATIONS

Readout error

Fig. S5 singles out the measured probability density P(Im(a)) presented in the first figure of the article, when
no drive is applied to the qubit (continuous line). For Im(a)< 0, the agreement is excellent with the predicted
probability density (dotted line) using the previously discussed calibration of the readout pulse (Nm =11 temporal
modes of |α|2 = 1.4 photons), detection chain efficiency (ηtot = 67%) and dispersive shit angle (θ = 40.7◦).The readout
fidelity F is defined as the probability to measure P (Im(a)) < 0 while the qubit is in the ground state |g〉, given by

F =
1

2

(
1 + Erf

(√
ηNm|α|2sinθ

))
≈ 99.8% (9)

Qubit thermal equilibrium population

When no drive is applied to the qubit, we still measure a probability P th(Im(a) > 0) = 2.4% of getting an Im(a)> 0
outcome. In this paragraph we demonstrate that this probability corresponds indeed to the thermal equilibrium
qubit excited population P th|e〉. For that purpose, we compare the amplitude of Rabi oscillations of the qubit with and

without an initial π pulse at the on the |e〉 ↔ |f〉 transition, |f〉 being the qubit second excited state. Without this
preparation pulse, the fitted amplitude of the decaying Rabi oscillation, expressed as a distance in the phase-space
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FIG. S5: Continuous (black) line: Measured probability density P(Im(a)) when no drive is applied to the qubit. A thermal
equilibrium probability P th(Im(a) > 0) = 2.4% of getting Im(a)> 0 is observed. Dotted (blue) line: probability density of the
quadrature Im(α) of the inner cavity field expected from the previous calibration. The fidelity is defined as the integral of this
curve on the negative half axis.

(Re(a),Im(a)), is |αe − αg|(1 − 2P th|e〉). With this preparation pulse, which transfers the population P th|e〉 into the

second excited state, Thales intercept theorem gives a fitted amplitude of |αe −αg|(1−P th|e〉). From the ratio of these

two rabi amplitudes we obtain P th|e〉 = 1.9% ± 0.3%, in agreement with the measured P th(Im(a) > 0) and readout
error. This population corresponds to a temperature of 46 mK. Note that this number was substantially improved
by a careful filtering of the microwave lines (see Fig. S1).

Measuring of the higher excited state occupation

In order to determine an upper bound for the population in state |f〉 at thermal equilibrium, we perform the readout
pulses with a tone at ωr − χ− 2χef = 2π× 7.74464 GHz, which corresponds to the maximally transmitted frequency
when the qubit is in state |f〉. Note that χef = 1.15 MHz is larger than χ, contrarily to what is expected from [6].
We interpret this discrepancy by a coincidental match between upper transition frequencies of the qubit and cavity
modes. We chose the phase of the field complex amplitude so that Im(a) discriminates optimally between states |f〉
and |g〉 or |e〉 (see Fig. S6). Beyond a given measured value of Im(a), the state of the qubit is |f〉 with a large fidelity.

In the experiment, we prepare two configurations. One, at thermal equilibrium, without any pulse sequence before
measurement which leads to a distribution Pth(α) and the other with a measured distribution P≈f (α), when the qubit
is prepared as close as possible to state |f〉 in presence of relaxation. This latter state is obtained by applying a fast
π pulse on the transition |g〉 ↔ |e〉, followed by a fast π pulse on the transition |e〉 ↔ |f〉.

In order to obtain an upper bound on the occupation 〈f |ρth|f〉 of state |f〉 in thermal equilibrium, we measure the
likeliness Ps(ρ) to obtain Im(a) > s for a threshold s when the qubit is in state ρ. By linearity, we have

Ps(ρth) =
∑

i∈{g,e,f}

〈i|ρth|i〉Ps(|i〉〈i|) (10)

≥ 〈f |ρth|f〉Ps(|f〉〈f |) (11)

Now, using the fact the pointer state for |f〉 has a larger imaginary part than any other pointer state at this readout
frequency, we have

∀s, Ps(ρ) ≤ Ps(|f〉〈f |),
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FIG. S6: (left panel) Measured phase of the transmitted signal through the cavity when the qubit is prepared in states |g〉, |e〉
or |f〉. (right panel) Depending on the readout frequency, the phase-preserving detection setup is able to discriminate between
different states. The top panel shows the frequency used throughout the main text (optimal separation between |g〉 and |e〉)
while the bottom panel shows the frequency used to measure the occupation of the |f〉 state (see text).

and thus,

Ps(ρth) ≥ 〈f |ρth|f〉Ps(ρ≈f ) (12)

There is therefore a way to give an upper bound to the occupation 〈f |ρth|f〉 of state |f〉 in thermal equilibrium

〈f |ρth|f〉 ≤
Ps(ρth)

Ps(ρ≈f )

We increase this threshold s to get as strict a constraint on 〈f |ρth|f〉 as possible while keeping enough accuracy
(hence enough events). We show as a result that 〈f |ρth|f〉 6 0.0007, in agreement with a thermal distribution
〈f |ρth|f〉 ≈ 〈e|ρth|e〉2 = 0.0006.

RESET BY FEEDBACK

In Fig. S7, we show the remaining population in the excited state of the qubit for four strategies of reset. Starting
from the maximally mixed state (see main text), we wait for a time tdelay before applying 0, 1, 2 or 3 resets by
feedback.

SIMULATION OF THE TRAJECTORIES

Rabi oscillations

We neglect here the population in states beyond |g〉 and |e〉 so that the the evolution of the density matrix

ρ =

(
ρgg ρge
ρeg ρee

)
is simulated using Bloch’s equations. Assuming that the qubit is driven at ωeg inducing a Rabi
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FIG. S7: Dots: Probability to measure the qubit in its excited state after a time tdelay for four strategies preparing the ground
state |g〉 starting from an almost perfectly mixed state. The first strategy (red) consists in simply waiting for relaxation to
put the qubit into its ground state. In the second option (orange), a single measurement based reset (see Table 1 in the main
text) is performed after waiting for a time tdelay and a π-pulse is then applied to the qubit in case the outcome reads |e〉.
Another measurement at time tdelay then probes the efficiency of preparation of state |g〉. The two other options concatenate
two (purple) or three (blue) feedback resets in order to improve the preparation even further. See [7] for comparison.

rotation at frequency ωR(t) and neglecting thermal excitations from |g〉 to |e〉, these equations read

d

dt

(
ρee
ρge

)
=

(
−Γ1 ωR(t)
−ωR(t) −Γ2 − Γm(t)

)
·
(
ρee
ρge

)
+

(
0
ωR(t)/2

)
(13)

where the time varying measurement induced dephasing Γm = κtot
2 |αg(t) − αe(t)|

2 (from Eq. (1)) depends on the
measurement pulses. For an incoming readout pulse starting at time 0 and of duration τ = 1.2 µs leading to n̄ = 1.4
photons on average in the steady state (see Fig. S4), one can show that [8]

αg(t) = −
√
n̄
i
√
κ2 + 4χ2

κ− 2iχ

(
1− e−

(κ−2iχ)
2 t

)
t ∈ [0, τ ],

αg(t) =
√
n̄
ie−

(κ−2iχ)
2 t

√
κ2 + 4χ2

κ− 2iχ

(
1− e

(κ−2iχ)
2 τ

)
t > τ,

αe(t) = −α∗g(t).

We can divide a period of the Rabi oscillations of length Tosc = 4000 ns in 4 steps (see Fig. S9), each with a different
driving amplitude of the qubit (and thus a different Rabi pulsation ωR) and a different field amplitude the cavity.

• step A : measurement and pause from 0 to Tp = 1500 ns
During the measurement, Zeno effect prevents from performing a proper Rabi oscillation, therefore we pause
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FIG. S8: (a) Decaying Rabi oscillations represented in the Bloch sphere. Here, the Rabi period is 6.284 µs and they decay
in TR = 15.5 µs. The colors correspond to time as in the main text. (b) Similar representation of stabilized Rabi oscillations
(Fig. 3b in the main text).

the drive power (ωR = 0) as long as there is dominant measurement induced dephasing (Γm > 5 Γ2) due to the
measuring field amplitude which rises inside the cavity until a steady state is reached and then, after 1200 ns,
decreases during 300 ns. Coherences collapse nearly instantaneously during step A. At half the acquisition
time by the FPGA board (middle of red time interval in Fig. S9), we record the population ρee,m in |e〉 and
afterwards simulate separately two trajectories with ρee,m = 0 or ρee,m = 1 according to the measurement
outcome.

• step B: fast forward from Tp = 1500 ns to Tp + Tff = 1564 ns.
In order to compensate for half the precession lost during the pause, the drive is performed beyond the targeted
frequency during a short period of time, hence ωR = 2π

Tff

Tp

2Tosc
(the other half is compensated in step D). The

field amplitude remaining in the cavity after step A decreases exponentially from a mean photon number 0.05
(Γm ' 5 Γ2) to 0.025 (Γm ' 2.5 Γ2). In fact, the JPC is turned off after the measurement and there may be a
change in the effective cavity exit rate κtot in time or effective measurement duration. A slight modification of
these parameters allow a much better fit to the measured trajectory.

• step C : nominal Rabi drive from Tp + Tff = 1564 ns to Tosc − Tff = 3936 ns.
Rabi oscillation is here nominally driven at the target frequency ωR = 2π

Tosc
. Average photon number in the

cavity keeps decreasing down to 0. At t = 1850 ns, a correcting π-pulse occurs in case the previous measurement
outcome is |e〉. We therefore add up, in the simulation, the two parallel trajectories simulated during step A,
with weights ρee,m (qubit measured in |e〉) and 1−ρee,m (qubit measured in |g〉). To take into account the finite
fidelity of the measurement, the first trajectory receives a correcting pulse with probability F = 0.998 and the
second one with a probability 1−F = 0.002 (see section on measurement fidelity).

• step D : fast forward from Tosc − Tff = 3936 ns to Tosc = 4000 ns.
Same purpose as step B with ωR == 2π

Tff

Tp

2Tosc
. There is no readout field inside the cavity at this step.

For any initial value of ρ, the trajectory converges in about 3 or 4 periods toward the steady state represented in
Fig. S9.

Ramsey oscillations

The strategy for simulating Ramsey oscillations is very similar to this one. The fast-forward steps B and C are
replaced by 64 ns long ±π/2 pulses and there is no drive during step C. At time 0 in the simulation, the qubit is
rotated towards state (|g〉+ |e〉)/

√
2.
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FIG. S9: (a) Pulse sequence for stabilizing Rabi oscillations. For a typical period of 4 µs, the lines represents the drive amplitude
(green) and expected occupation of the cavity (purple). The complex amplitude a of the measurement field is recorded only
during the steady part of the occupation (red area). When Im(a) > 0, a fast π pulse is applied after a total delay of 500 ns
(actuation). (b) Persistent Rabi oscillations measured using the pulse sequence described in (a) represented in 〈σZ〉 (dots) and
〈σX〉 (circles). The simulation result is shown as lines, dashed for 〈σZ〉 and gray for 〈σX〉.
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