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I. EXPERIMENTAL SETUP

The full experimental setup is presented on Fig. S1. The superconducting qubit follows the design of the "3D
transmon" described in Ref. [1]. A single aluminum Josephson junction, connected to two antennas of 0.4 by 1mm
each on a sapphire substrate, is embedded in an empty bulk aluminum cavity, anchored at base-temperature 20 mK
of a dilution refrigerator. The transmon chip was fabricated by electron-beam lithography, double-angle evaporation,
and oxidation to form the tunnel junction. Spectroscopic measurements give a qubit frequency νq = 5.19 GHz that
differs from the next transition by an anharmonicity α/2π = 160 MHz. The measured relaxation time is T1 = 16 µs,
and the Ramsey time is T2 = 10.5 µs.

Readout and drive pulses are generated by single side-band modulation of two continuous microwave tones produced
by microwave generators set respectively at νc0 + 62.5 MHz and νq + 62.5 MHz, where νc0 = 7.74 GHz is the cavity
frequency at high power (Fig. S3.a). The modulation is performed by mixing these continuous waves with pulsed
sinusoidal signals at 62.5 MHz synthesized by two different channels of a 4 channel Tektronix Arbitrary Waveform
Generator. All sources are synchronized by an atomic clock. Both pulses are combined and sent towards the weakly
coupled input port of the cavity through an input line which is filtered and attenuated with cryogenic attenuators at
various stages of the dilution refrigerator, ensuring that negligible thermal excitations enter the device. A commercial
(from K&L) low-pass clean-up filter of 12 GHz cut off frequency is used at the still stage (850 mK), while a home
made low pass filter consisting in a microstrip line enclosed in an infrared tight box filled with Eccosorb is inserted
at base temperature. Note that a similar line, denoted as "reflection probe" in Fig. S1, has been used for an in situ
estimation of cavity input and output coupling rates Γa,b =

γa,b

2π (see section "Details of the model"), but is unused
in the discussed experiment. Finally, the transmon aluminum 3D cavity is enclosed in an infrared tight copper box
thermally anchored to the 20 mK stage. Its inside walls are all covered by a radiation absorbing coating consisting of
1 mm diameter SiC grains mixed up in Eccosorb.

Two cryogenic circulators in series are used to direct the outgoing fluorescence and readout signals from the cavity
toward a Josephson mixer used as a low noise non degenerate amplifier at the qubit frequency νq. A cryoperm
magnetic shield encloses the Josephson mixer and its biasing coil (not shown). A third channel of the AWG is used
to turn on (∼ 30 dB of gain) or off (gain 1) the Josephson amplifier by DC-modulation of a continuous pump tone
at 13.8 GHz. The output signal of the Josephson amplifier is then routed back towards a low noise HEMT (High
Electron Mobility Transistor) amplifier of 40 dB gain from California Institute of Technology, isolated with a bias-tee
and two circulators in series.

The output signal of the HEMT amplifier is further amplified at room temperature, then routed to a mixer driven,
using a fast RF switch, either at νq + 62.5 MHz when fluorescence is measured, or at νc0 + 62.5 MHz when the qubit
state is finally readout (full representation of pulses scheme on Fig. S2). This scheme ensures that each of these two
signals is mixed down to 62.5 MHz before being acquired by a 10-bit ADC at 2GS/s and numerically demodulated to
extract both quadratures VRe and VIm using an FPGA board.

∗These two authors contributed equally to this work
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Figure S1: Schematics of the experimental setup

II. PREPARATION AND MEASUREMENT FIDELITIES

A. Preparation fidelity

In the absence of any active qubit cooldown scheme, thermal excitations in |e〉 would greatly limit the qubit’s
density matrix purity (∼30% occupation of state |e〉), even before starting to drive the qubit. Then, higher excited
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Figure S2: Detailed pulse sequence. All pulses are generated by modulating continuous microwave tones with waveforms
generated by an Arbitrary Waveform Generator, synchronized with the clock of the acquisition board. The qubit is first cooled
down for 100 µs using the method of Ref. [2]. After the end of these drives, a delay of 3 µs is used for intra cavity field to
leak out. A fast π-pulse can then be applied for preparation of state |e〉. Qubit is then driven for 2.5 µs and the Josephson
amplifier is turned on (pump on) in order to record fluorescence signal more efficiently. After the end of the drive, qubit state
is readout using a high power pulse tuned at cavity bare frequency νc0: for this purpose, the amplifier is turned off and the
signal is down-converted at νc0 + 62.5 MHz, using a fast RF switch at room temperature.

states (|f〉 and above) would be occupied up to 9 % of the time, so that the approximation made by considering our
transmon as a two-level system would not be accurate. We solve this problem by cooling down the qubit before every
experiment using reservoir engineering as in Ref. [2]. When applying this cooling scheme long enough ( 100 µs > T1),
the occupation probability of the higher excited states is less than 1% at the beginning of every experiment reported
in the letter.

The preparation efficiency is estimated by reading out the state of the qubit right after preparation in a separate
experiment. Taking into account the finite readout fidelities described below, the |e〉 level remains excited only 9.5%
of the time when preparing state |g〉, and gets as high as 84.6% when preparing state |e〉. This difference in purity
is explained by two complementary effects. First, the relaxation of the qubit during the 500 ns of waiting time after
the π-pulse preparing state |e〉. This waiting time was necessary in order to avoid polluting the fluorescence signal
with the preparation pulse. Second, the π-pulse is inefficient when cavity photons remain after the cooling procedure,
because the qubit frequency is shifted by χcq per photon, which makes the pulse out of resonance about 5 % of the
time.

The maximally entropic state is described by a density matrix ρ = (|g〉〈g|+|e〉〈e|)/2. Given the preparation fidelities
above, we can prepare ρ0 = 0.905|g〉〈g|+ 0.095|e〉〈e| by cooling down the qubit and ρ1 = 0.154|g〉〈g|+ 0.846|e〉〈e| by
performing a π pulse. In order to prepare ρ = 1/2, we work with a large ensemble of experiments in which 46.1% are
prepared in ρ0 and 53.9% in ρ1. This is how we get an excellent preparation of the maximally entropic state despite
not being able to prepare state |e〉 to better than 85%.

On a separate note, the relatively large temperature of the qubit at equilibrium does not reflect on the equilibrium
occupation of the cavity mode. In fact, we can precisely determine the occupation of the cavity by looking at the
spectroscopy of the qubit, since it exhibits peaks at νq−nχcq for each integer n, whose amplitude reveals the probability
to have n photons. In practice, all peaks but the one corresponding to zero photons are below the noise floor of our
measurement, which corresponds to an uncertainty of 4 % on the occupation of each level. Hence, at equilibrium,
there are less than 0.04 average photons in the cavity. Note that the thermalization of the qubit and of the cavity are
very different in nature since the qubit is quite thermally isolated on a sapphire chip poorly anchored inside of the
superconducting cavity.

B. Post-selection fidelity

In order to select sub-ensembles of experiments, one realizes a strong measurement of the qubit state at time T
using the high-power readout method [3]. Increasing the readout power above some threshold, the cavity resonance
frequency switches to νc0 = 7.74 GHz. For a given pulse duration at νc0 (here 200 ns), the threshold depends on qubit
state, hence providing an efficient readout method. In practice, we found a maximal contrast between qubit states
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Figure S3: a, High-power. Transmission t of the cavity (dB) encoded in color as a function of frequency and power at cavity
input from the estimated attenuation on line a. Qubit is at thermal equilibrium before the measurement begins. Low-power
resonance of the cavity (at νc) is apparent on the bottom right part, with several replicas shifted by −χ (due to spurious thermal
excitations of the qubit anharmonic oscillator). At high-power, cavity resonates at its bare frequency νc0. High-power readout
(HPR) is performed by sending a pulse in the region at the frontier between these two regimes, so that cavity response depends
strongly on qubit state [3]. b, Low-power. Transmission of the cavity in the Fresnel plane (main panel) and in amplitude as
a function of frequency (inset). The probing power is chosen such that there is ∼ 1 photon on average inside cavity ( -152 dBm
on Fig. a). The relative amplitudes of the resonances at νc, νc − χ, νc − 2χ... reveal the thermal occupation of each level of
the qubit: it is compatible with a Boltzman distribution at temperature ∼ 200 mK (qubit excited with 29.5% probability).

for a power that would lead to about 1.5× 106 photons on average in the cavity if the excitation were permanent.
The fidelities of the readout are defined by the conditional probabilities to observe switching S (or no switching S̄)

events knowing the state of the qubit: Fg = P(S|g) and Fe = P(S|e). We also define the unconditional probability
P(S) = 1−P(S̄) to observe a switching event. In order to estimate these fidelities, we first need to extract indepen-
dently the qubit thermal excitation probability. This is done by measuring the transmission of the cavity at low drive
power with the qubit in thermal state. As shown on Fig. S3b, several resonance peaks are visible, corresponding to
cavity shifts by various qubit states (|g〉, |e〉, |f〉...). By fitting the relative amplitudes of these peaks with a Boltzman
distribution, one can access to the thermal occupation of the excited states. We find that excited qubit states are
occupied up to 29.5% of the time at thermal equilibrium. Now to determine the fidelities, we compare the high power
readout signal with or without a fast π-pulse inverting the occupations of states |g〉 and |e〉. Assuming a probability
of switching for higher excited states of the qubit close to 1, we then extract the fidelities : Fg ' Fe ' 96± 1%.

Due to finite readout fidelity, the final measurement matrix E has a purity smaller than 1, even at the final time
T of the measurement. Quantitatively, and considering for example trajectories for which the final measurement
indicates a qubit in |g〉, it reads: E(T ) = P(g|S)|g〉〈g|+ (1− P(g|S))|e〉〈e|. Neglecting the higher excited states (|f〉
and above) occupancy, a direct calculation leads to

P(g|S) =
Fg

P(S)

P(S) + Fe − 1

Fg + Fe − 1
.

A symmetric formula can be derived for P(e|S), which will appear in the purity of E(T ) for qubit post selected in |e〉.
These conditional probabilities are very sensitive to readout fidelity, particularly when post-selecting trajectories

that are rare. Theoretical predictions including the fidelities found above are in good agreement with experimental
results overall. However, in some regions of time and Rabi frequency, the assumption of negligible occupation of state
|f〉 leads to errors. In order to correct for this approximation, it is possible to artificially increase Fe. In practice, we
have used Fg = 96% and Fe = 99% throughout the letter (see Figs. S4.a,b).
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III. DETAILS OF THE MODEL

A. Adiabatic elimination of the cavity field operator

The qubit and cavity can be described by the Jaynes-Cumming Hamiltonian, valid in the rotative wave approxi-
mation:

HJC

h
= νq0

σz
2

+ νc0

(
c†c+

1

2

)
+

g

2π

(
σ+c+ σ−c

†) . (S1)

The first term is the qubit Hamiltonian, with νq0 the qubit frequency not yet Lamb-shifted by the dressing of the
cavity, and the Pauli matrices defined in the basis {|e〉 , |g〉} as

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

σ− =

(
0 0
1 0

)
, σ+ =

(
0 1
0 0

)
, 1 =

(
1 0
0 1

) . (S2)

The second term describes the microwave cavity first mode and the final term represents a coupling of strength g
between the qubit mode and the cavity mode, which hybridizes the individual qubit and photon eigenstates.

In the input-output formalism, one can take into account finite coupling to transmission lines and qubit non radiative
decay processes by considering the propagating modes[? ] ain, aout, bin, bout, ξin, ξout verifying boundary conditions: aout =

√
γac− ain

bout =
√
γbc− bin

ξout =
√
γnrσ− − ξin

, (S3)

where γb/2π = 0.25 MHz is the coupling strength to line b, and γa/2π = γL/2π ' 2 kHz is the coupling strength
to line a, approximately equal to the internal losses of the cavity γL. γnr is the radiative decay rate of the qubit
(spontaneous relaxation not due to the photonic part of the qubit excitation).

Then, in the Heisenberg picture, qubit and cavity follow the coupled Langevin equations of motion :

{
ċ = i

~ [HJC , c]− γa+γb+γL
2 c+

√
γaain +

√
γbbin

σ̇− = i
~ [HJC , σ−]− γnr

2 σ− +
√
γnrξin

. (S4)

In these equations, pure dephasing of the qubit has been neglected. Considering that ∆/2π = νc0 − νq0 ' 2.6 GHz
is the largest parameter of the system, in the frame rotating at νq0, cavity reaches steady state nearly instantaneously
at any time t so that one can perform the so-called adiabatic elimination of the cavity: ċ = 0. Then, assuming that
〈bin〉 = 0 (no input drive via line b) and 〈ain〉 = A is a semi-classical driving tone, one can show that:

〈bout〉 = 〈bout〉0 −
√
γ1b〈σ−〉. (S5)

In the experiment, 〈bout〉0 is dominated by the direct parasitic leak between the lines a and b. In the dispersive
regime, γ1b = γb

g2

∆2 is the relaxation rate of the qubit through line b, which adds up to the non radiative decay rate to
determine qubit’s lifetime: γ1 ' γnr + γ1b. There are two ways of estimating the coupling factor g leading to different
results, hence to a different value of γ1b.

• Through the shift of the cavity frequency once dressed by the qubit: from Eq (S4), one can show that νc −
νc0 = g2

2π∆ ≈ 16 MHz (these two frequencies are shown on Fig. S3.a) so that g/2π = 200 MHz and one gets
γ1b ' (102 µs)−1.

• Through the dispersive shift of the cavity when qubit goes from ground to excited state: this shift χcq = 2αg2/∆2

can be read directly on Fig. S3a and is χcq/2π = 3.8 MHz. Recalling that the anharmonicity is α/2π = 160 MHz,
one finds γ1b ' (54 µs)−1.

These two values differ greatly and we believe that at least one of the models is wrong. Since the first method
assumes that the high power limit of the cavity probe corresponds to the total absence of a qubit, whereas there
are still antennas and a Josephson junction, it seems to us that it is the less reliable. However, we are not aware of
any publication on this issue and prefer to show both results. Since the value of γ1b is simply informational in our
experiment and has no impact on the rest of the letter, this is out of the scope of the present work.
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Figure S4: a Measured and expected conditional average fluorescence signals at t = 0.99 µs (resp t = 1.44 µs) are plotted in
red (resp. green) as a function of Rabi frequency νR for a qubit prepared in |e〉 and post-selected in |g〉. Neglecting the higher
excited qubit states leads to a small error on the postselection fidelity resulting in the dashed line (Fg = Fe = 0.96, dashed
lines). Letting these fidelities be free parameters in order to account for these higher excited states allow for a slightly better
agreement with the experiment at Fg = 0.96 and Fg = 0.99. b Same comparison for the whole set of data: measured s− is
encoded in colour as a function of time t and Rabi frequency νR. Plain contours (resp. dashed contours) represent areas where
the model with measured fidelities (resp. fitted fidelities) exceeds the classical range [−0.5, 0.5]. c For a qubit prepared in |e〉
and post-selected in |g〉, predicted fluorescence signal at frequencies νR = 0.08 MHz (in brown) and νR = 1.47 MHz (in purple)
when considering a detection bandwidth of ∆f = 1.6 MHz (plain lines) or with infinite bandwidth (dashed lines). Data (dots)
are reasonably well reproduced by both models at low Rabi frequency compared to ∆f , but not for higher frequency. The
output of the finite bandwidth numerical filter to a square excitation of amplitude 0.5 delimits the gray region. The signal is
considered to be beyond classical range only when trespassing this region, which is a conservative boundary. d Experimental
fluorescence signal (in color) for the same preparation and post-selection conditions. Plain contours (resp. dashed contours)
enclose regions of nonclassical values for ∆f = 1.6 MHz (resp. infinite). The finite bandwidth introduce both a delay and some
attenuation, especially at large νR. The purple and orange lines correspond to the dots in c).

B. Measurement Strength

As described above, the fluorescence signal is a propagating signal whose amplitude is of the order of √γ1b. That
means that the average number of photons in the signal per unit of time is γ1b. The detector has a bandwidth
∆f = 1.6 MHz limited by the Josephson amplifier of power gain G = 103. The average number of signal photons
in the amplifier resonator is thus of the order of Gγ1b/∆f ≈ 6. The quantum noise level in the amplifier resonator
corresponds to G − 1/2 ≈ G average photons. Therefore, the measurement strength, which is the signal to noise
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ratio [4], is of the order of γ1b/∆f ≈ 0.1 %. This number corresponds to the measurement strength of the shortest
independent measurement time, which is 1/∆f . If the measurement lasts for a time Tm > 1/∆f , the measurement
strength is γ1bTm as long as this number is much smaller than 1. In our experiment, even if one would consider the
whole recording of fluorescence from t = 0 to t = T , the measurement performed by the fluorescence is weak since
γ1bT . 3 %.

C. Taking into account detector bandwidth in the time domain

The predictions of the average values (conditional or not) of σ− are expected to reproduce the fluorescence signal
s

(ideal)
− (t) one would measure with a perfect detector. In practice, the detection setup has a bandwidth of 1.6 MHz
which distorts the signal and needs to be modeled in order to compare theory and experiment. Starting from a
predicted s

(ideal)
− (t), we use a numerical filter corresponding in Fourier domain to a Lorentzian shape transmission

centered at νq and with full width at half maximum ∆f = 1.6 MHz. The deformation can be observed in Figs. S4c
and S4d where both the unfiltered and the filtered signals are represented.

Apart from that treatment, a global scaling factor, used for all the measured data in the letter, is used to take into
account the gain of the detection setup. The figure we find is consistent with the detection setup.

In Fig. 3 of the letter, the contours delimiting the classical boundaries also take into account the finite bandwidth
of the detector. Ideally, they should reflect the regions of time t and Rabi frequency νR where |s(ideal)

− (t)| > 0.5. In
practice, in order to avoid complex post-treatment of the data, we calculated the output of the detection setup for a
square signal going instantaneously from 0 to 0.5: s(ideal)

− (t) = 0.5Θ(t). This leads to a conservative estimation of the
regions where macro-realism is violated.

IV. COMPLEMENTARY EXPERIMENTAL RESULTS

Measured and predicted fluorescence signals for every preparation and post-selection conditions we have investigated
are represented on Fig. S5. Signal value is encoded in color as a function of time t and Rabi frequency νR. Regions in
which signal goes beyond classical range are enclosed in black contours. When πνRT is an integer number, the past
and future knowledge either maximally agree or maximally disagree. In the latter case, ρ̃ = 0 and 〈σ−〉w is zero. This
happens for odd numbers of π rotations for |e〉 to |e〉 and |g〉 to |g〉 and even numbers for |e〉 to |g〉 and |g〉 to |e〉.
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Figure S5: Comparison between experiment and theory
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