Many-body physics and superconducting quantum circuits

Nicolas Roch Neel Institute, Grenoble, France QuantECA (Quantum Electronics and Circuits Alpes)

Come and visit us!

Longitudinal coupling

R. Dassonneville et al. ArXiv 1905.00271 (2019)

Traveling Wave Parametric Amplifiers

L. Planat et al., in prep

New Materials (Re, InOx)

Longitudinal coupling

R. Dassonneville et al. ArXiv 1905.00271 (2019)

Traveling Wave Parametric Amplifiers

L. Planat et al., in prep

New Materials (Re, InOx)

Superconducting quantum circuits team

Univ. Grenoble Alpes

Acknowledgments

Grenoble

Serge Florens

Nicolas Gheereart

Théo Sépulcre

U. Witwatersrand Johannesburg

Izak Snyman

Denis Basko Laboratoire de physique et de modélisation des milieux condensés

Grenoble

What is many-body physics? One example: strongly correlated nanostructures

Many open questions: dynamics, entanglement...

Other examples: cold atoms, strongly correlated electron systems, high-Tc superconductors.....

Why many-body physics?

fault tolerant threshold

error rate

What kind of many-body system?

many qubits

Fowler, A., et al. Phys. Rev. A (2012)

size of the Hilbert space 2^N

What kind of many-body system?

many qubits

one qubit, many cavities

Fowler, A., et al. Phys. Rev. A (2012)

size of the Hilbert space 2^N

size of the Hilbert space M^N

What kind of many-body system?

many qubits

one qubit, many cavities

Fowler, A., et al. Phys. Rev. A (2012)

size of the Hilbert space 2^N

size of the Hilbert space M^N Hardware efficient What kind of many-body system? Our choice: quantum impurities

One quantum system coupled to a large bath: The "hydrogen atom" of many-body physics What kind of many-body system? Quantum impurities: relevant to many physical systems

Heavy fermions

Credit: Mohammad Hamidian - Davis Lab Nanostructures Exotic superconductors

Credit: Marc Tippmann Munich Cold atoms

Credit: Dalla Torre & Sela - Physics (2018)

Knap et al., Phys. Rev. X (2012)

size of the Hilbert space

M^N

Non-trivial many-body system if: \square Many degrees of freedom: M^N

Easy to diagonalize, no entanglement

Non-trivial many-body system if:

- \square Many degrees of freedom: M^N
- \square Strong non-linearity: anharmonicity $\gtrsim \Gamma$

How do we engineer our many body system ? effect of ZPF in quantum optics: Lamb shift

How do we engineer our many body system ? effect of ZPF in quantum optics: Lamb shift

W. E. Lamb & R. C. Retherford, Phys. Rev. (1947)

Small effect
$$\frac{\Delta\omega}{\omega_0} = 10^{-6}$$

How do we engineer our many body system ? effect of ZPF in quantum optics: Lamb shift

$$\Delta \omega = \frac{1}{\omega_0^*} \omega_0^*$$

W. E. Lamb & R. C. Retherford, Phys. Rev. (1947)

Interplay of non-linearity and ZPF renormalization of the trapping potential H. A. Bethe, Phys. Rev. (1947)

How do we engineer our many body system ? ZPF in circuits: destroying charge quantization

S. Jezouin, et al. Nature (2016)

Non-trivial many-body system if:

- \square Many degrees of freedom: M^N
- \square Strong non-linearity: anharmonicity $\gtrsim \Gamma$
- \square Ultra-strong coupling regime: $\Gamma \simeq \omega_0^*$

Quantum impurities in cQED: a recipe

Engineering high impedance environments

A small Josephson junction in a high impedance environment

Discussion and modelling

The LC circuit: a harmonic oscillator

Useful variables

$$Q(t) = \int_{-\infty}^{t} i(t')dt'$$
$$\phi(t) = \int_{-\infty}^{t} v(t')dt'$$

Fluctuations

 $\left\langle Q^2 \right\rangle = \frac{\hbar}{2Z_0} \qquad \left\langle \phi^2 \right\rangle = \frac{\hbar Z_0}{2}$ with $Z_0 = \sqrt{\frac{L}{C}}$

Quantum circuits: transmission line

What about the many degrees of freedom?

Microwave resonator

Non-trivial many-body system if:

- \checkmark Many degrees of freedom: M^N
- \square Strong non-linearity: anharmonicity $\gtrsim \Gamma$
- \square Ultra-strong coupling regime: $\Gamma \simeq \omega_0^*$

The Josephson junction

First Layer

Second Layer

"Superconducting tunnel junction"

300 nm

EHT = 3.00 kV WD = 4.2 mm Signal A = InLens System Vacuum = 2.08e-006 mbar Mag = 20.42 K X (Polaroïd reference)

Date :3 Jul 2015 Time :19:36:32

A Josephson junction shunted by a capacitor

$$\hat{H} = E_{\rm c}(\hat{N} - n_{\rm g})^2 + E_{\rm J}(1 - \cos\hat{\phi})$$

Generalised impedance $Z_{\rm J} = \hbar/(2e)^2 \sqrt{2E_{\rm c}/E_{\rm J}}$

Non-trivial many-body system if:

Many degrees of freedom: M^N Strong non-linearity: anharmonicity $\gtrsim \Gamma$ Ultra-strong coupling regime: $\Gamma \simeq \omega_0^*$

Simplified system: Caldeira Leggett treatment ϕ

 $m \in [1, N]$

Temperature [mK]

Fluctuations", Elsevier (1997)

Microwave engineering argument: impedance matching

$$Re\left(Z(\omega=\omega_0)\right)=\sqrt{L/C}$$

Microwave engineering argument: impedance matching

$$Re\left(Z(\omega=\omega_0)\right)=\sqrt{L/C}$$

hence we need strong impedance environment as well

How do we engineer our many body system ?

Non-trivial many-body system if:

Many degrees of freedom: M^N Strong non-linearity: anharmonicity $\gtrsim \Gamma$ Ultra-strong coupling regime: $\Gamma \simeq \omega_0^*$

Many-body physics and circuitQED Our choice: quantum impurities

Unexplored many-body physics ?

For a review see: G. Schön & A. D. Zaikin, Physics Reports (1990)

"Quantum fluctuations in the equilibrium state of a thin superconducting loop"

F. W. J. Hekking & L. I. Glazman, Phys. Rev. B (1997)

S. loop "Plasma" or "Fabry-Pérot" modes

 $E_{\rm J}, C$

"Quantum fluctuations in the equilibrium state of a thin superconducting loop"

F. W. J. Hekking & L. I. Glazman, Phys. Rev. B (1997)

S. loop "Plasma" or "Fabry-Pérot" modes

Beyond Caldeira-Leggett: modes are affected.

Josephson junction $E_{\rm J}, C$

We will show that a finite renormalized Josephson energy can arise because the junction itself affects the fluctuations of the environment.¹¹ Simultaneously, the modes of the environment renormalize the plasmon oscillations in the junction.

"Quantum fluctuations in the equilibrium state of a thin superconducting loop"

F. W. J. Hekking & L. I. Glazman, Phys. Rev. B (1997)

S. loop "Plasma" or "Fabry-Pérot" modes

Beyond Caldeira-Leggett: modes are affected.

Josephson junction $E_{\rm J}, C$

Lamb shift cousin

 $\omega_{\rm J}^* \neq \sqrt{2E_{\rm J}E_{\rm c}}$

We will show that a finite renormalized Josephson energy can arise because the junction itself affects the fluctuations of the environment.¹¹ Simultaneously, the modes of the environment renormalize the plasmon oscillations in the junction.

Quantum impurities in cQED: a recipe

Engineering high impedance environments

A small Josephson junction in a high impedance environment

Discussion and modelling

Reaching high impedances Josephson junction meta-material

 $Z_c = \sqrt{L/C_g}$

Reaching high impedances Josephson junction meta-material

Reaching high impedances Josephson junction meta-material

$$Z_{\rm c} = \sqrt{L_{\rm J}(\Phi)/C_{\rm g}}$$
$$Z_{\rm J} = \sqrt{L_{\rm J}(\Phi)/C_{\rm J}}$$

JJ meta-material: Bridge Free Fabrication

Challenges faced: stitching errors, resist homogeneity, focus homogeneity, proximity effect....

JJ meta-material: Measuring

Quantum regime: $\hbar\omega\gg k_{\rm B}T$

Josephson junction meta-material

7

8

-45

-50

4

5

6

Probe frequency (GHz)

 $Q_{\rm int} \sim 10^4$

Well controlled environment

Quantum impurities in cQED: a recipe

Engineering high impedance environments

A small Josephson junction in a high impedance environment

Discussion and modelling

A small Josephson junction in a high impedance environment

small junction (non-linear): $Z_{\rm J} \simeq 2k\Omega$

SQUID chains (linear):

 $Z_{\rm J} \simeq 10\Omega$ $Z_c = 1.8 \ k\Omega$

T = 24 mK

T = 24 mK

T = 24 mK

T = 24 mK

Odd/Even modes

Plasma frequency of the small junction

Observation: $\omega_{\rm J,exp}^*/2\pi = 6.9 \pm 0.2 \text{ GHz}$

Plasma frequency of the small junction Observation: $\omega_{J,exp}^*/2\pi = 6.9 \pm 0.2$ GHz $E_{J,bare} = 3.76 \pm 0.24$ GHz (Ambegaokar-Baratoff) $E_c = 14.3 \pm 0.8$ GHz (High power measurements) $\omega_{J,bare}/2\pi = 10.4 \pm 0.7$ GHz Plasma frequency of the small junction Observation: $\omega_{\rm J,exp}^*/2\pi = 6.9 \pm 0.2 \text{ GHz}$ (Ambegaokar-Baratoff) $E_{\rm J,bare} = 3.76 \pm 0.24 \,\,{\rm GHz}$ $E_{\rm c} = 14.3 \pm 0.8 \,\,{\rm GHz}$ (High power measurements) $\sim \omega_{\rm J, bare}/2\pi = 10.4 \pm 0.7 \; \rm GHz$

Parameter	Sample A	Sample B	Sample C
$\omega^*_{ m J,exp}/2\pi$	6.9 +/- 0.2 GHz	9.2 +/- 0.2 GHz	10.4 +/- 0.2 GHz
$\omega_{ m J,bare}/2\pi$	10.4 +/- 0.7 GHz	12.4 +/- 0.8 GHz	11.8 +/- 0.9 GHz

Lamb shift like effect?

Plasma frequency of the small junction Observation: $\omega_{\rm J,exp}^*/2\pi = 6.9 \pm 0.2 ~{\rm GHz}$ $E_{\rm J,bare} = 3.76 \pm 0.24 \,\,{\rm GHz}$ (Ambegaokar-Baratoff) (High power measurements) $E_{\rm c} = 14.3 \pm 0.8 \,\,{\rm GHz}$ $\rightarrow \omega_{\rm J, bare}/2\pi = 10.4 \pm 0.7 \; \rm GHz$

Parameter	Sample A	Sample B	Sample C
$\omega^*_{ m J,exp}/2\pi$	6.9 +/- 0.2 GHz	9.2 +/- 0.2 GHz	10.4 +/- 0.2 GHz
$\omega_{ m J,bare}/2\pi$	10.4 +/- 0.7 GHz	12.4 +/- 0.8 GHz	11.8 +/- 0.9 GHz

Lamb shift like effect?

Experiment in the single mode case: C. Rolland, A. H. Phys. Rev. I

C. Rolland, A. Peugeot et al., Phys. Rev. Lett. (2019)

Quantum impurities in cQED: a recipe

Engineering high impedance environments

A small Josephson junction in a high impedance environment

Discussion and modelling

Modelling: Self-Consistent Harmonic Approximation

Parameter	Sample A	Sample B	Sample C
$\omega_{ m J,bare}/2\pi$	10.4 +/- 0.7 GHz	12.4 +/- 0.8 GHz	11.8 +/- 0.9 GHz
$\omega^*_{ m J,exp}/2\pi$	6.9 +/- 0.2 GHz	9.2 +/- 0.2 GHz	10.4 +/- 0.2 GHz
$\omega^*_{ m J,th}/2\pi$	7.4 +/- 0.4 GHz	9.6 +/- 0.3 GHz	9.6 +/- 0.4 GHz

Modelling: Self-Consistent Harmonic Approximation

Parameter	Sample A	Sample B	Sample C
$\omega_{ m J,bare}/2\pi$	10.4 +/- 0.7 GHz	12.4 +/- 0.8 GHz	11.8 +/- 0.9 GHz
$\omega^*_{ m J,exp}/2\pi$	6.9 +/- 0.2 GHz	9.2 +/- 0.2 GHz	10.4 +/- 0.2 GHz
$\omega^*_{ m J,th}/2\pi$	7.4 +/- 0.4 GHz	9.6 +/- 0.3 GHz	9.6 +/- 0.4 GHz

Is this quantum?

ZPF versus temperature

Influence of the small JJ on the environment

Strong back-action of the impurity on the environment

ZPF versus temperature

$$\omega_{\rm J,th}^* = \sqrt{2E_{\rm J}^*E_{\rm c}}$$
$$\left| \phi^2 \right\rangle = 4\ln\left(\frac{\omega_{\rm J,bare}}{\omega_{\rm J}^*}\right)$$

ZPF versus temperature

What about the many-body nature ?

Conclusion and Perspectives

A Josephson platform for many-body quantum optics

Y. Krupko et al., J. Puertas-Martinez et al., npjQI (2019) Phys. Rev. B (2018) (See also R. Kuzmin et al., npjQI (2019))

Effect of Many-body ZPF: Lamb shift cousin (> 30%) and back-action of the impurity on the bath

S. Leger et al., in prep

Quantitative understanding using a variational ansatz

Non-linearity induced on the bath modes

Losses of the odd modes

Coherent manipulation of a many-body system

Quantum Engineering Univ. Grenoble Alpes

Extracting ω_{T}^*

Odd and Even modes :
$$\begin{split} \omega_e &= \frac{1}{\sqrt{LC}} \qquad \omega_o = \frac{1}{\sqrt{L_{\Sigma}C_{\Sigma}}} \\ &\frac{1}{L_{\Sigma}} = \frac{1}{2L} + \frac{1}{L_J} \\ &C_{\Sigma} = \frac{C}{2} + C_J \end{split}$$

Recent work: qubit coupled to high-impedance meta-materials

J. Puertas-Martinez et al., npj Quantum Information (2019)

University of Maryland (Manucharyan group)

R. Kuzmin et al., npj Quantum Information (2019)

A Transmon coupled to a JJ meta-material

A Transmon coupled to a JJ meta-material

Theory without free parameter

Non-linearity

	Ec	E _J (from R _N)	EJ (from fit)	Zc
Sample 0	14.1 GHz	3.77 +/- 0.25 GHz	3.50 +/- 0.02 GHz	1.87 kOhms
Sample 1	13.4 GHz	5.76 +/- 0.29 GHz	5.49 +/- 0.02 GHz	1.77 kOhms
Sample 2	10.2 GHz	6.84 +/- 0.49 GHz	7.78 +/- 0.005 GHz	1.84 kOhms