

Aurélien Fav

Quantum dynamics in nano Josephson junctions

Wiebke Guich	ard	Ioan Pop
Olivier Buisso	r	Florent Lecocq
Erank Hekking		Rapaël Léone
		Nicolas Didier
		Julien Claudon
Bernard Pann	etier	Franck Balestro
	CNRS – Université Josep	h Fourier
	Institut Néel- LP2N	1C
		Zhihui Peng
	OKENODEL	Emile Hoskinson
		Alex Zazunov
Scientific collaborations:	PTB Braunschweig (Germany)- Eu	roSQIP project
	LTL Helsinki (Finland)	
	KTH Stockholm (Sweden)	
	Rutgers (USA)	
Projects: ACI, EuroSQIP.		

Introduction

In the last decade:

new experiences in quantum mechanics using superconducting quantum circuits

- realisation of a two level system
- anharmonic quantum oscillator (multi-level system)
- two coupled qubits

 $\frac{1}{p} \frac{h\nu_1}{|g_1\rangle} \bigotimes \frac{1}{p} \frac{h\nu_2}{|g_2\rangle} \frac{|e_2\rangle}{|g_2\rangle}$ qubit 1 qubit 2 $|\Psi\rangle = (|g_1e_2\rangle + |e_1g_2\rangle)/\sqrt{2}$

- two level system coupled to high Q cavity

Motivations:

- quantum dynamics in macroscopic system
- new quantum phenomena
 - * very strong coupling with external field
 - * strong coupling with environment
- quantum information
- model system for the quantum nano-electronics

 $\frac{1}{|\psi\rangle} \frac{|e\rangle}{|g\rangle} \\ |\Psi\rangle = \alpha |g\rangle + \beta |e\rangle$

Outline

Driven anharmonic oscillator

- Introduction on Josephson junction
- quantum dynamics in a dc SQUID
- multilevel quantum system
- quantum or classical dynamics

Coupled circuit between a charge and a phase qubit

- asymmetry Cooper pair transistor
- entangled states
- tunable coupling
- resonant read-out
- Conclusion

Driven anharmonic oscillator

Harmonic oscillator:
$$H(t) = \frac{\hat{P}^2}{2m} + \frac{1}{2}m\omega_p^2\hat{X}^2 + f_{ext}\cos(2\pi\nu t)\hat{X}$$

The quantum particle follows a motion very close to the classical one

By adding anharmonic terms

$$-a\hat{X}^3 - b\hat{X}^4$$

New physics appear which were extensively studied

Classical mechanics: - Landau&Lifchitz

- modification of the resonance peak
- bi-stability (used as amplifier Siddiqqi 04, Ithier 05)

Quantum mechanics: many theoretical studies (Dykman88, Milburn86, Enzer97, Katz07, etc..)

Can we see quantum signature and cross-over between classical and quantum?

Non linear dynamics in superconducting quantum circuits

Equations of motion: current conservation $I_b = I_c \sin \phi + Cd^2 \phi/dt^2$

Current biased dc SQUID in the quantum limit: anharmonic oscillator

Quantum anharmonic oscillator!

Quantum measurements

J. Claudon, A. Fay, E. Hoskinson, and O. Buisson, PRB2007

A nano-second flux pulse reduces the barrier

Hysteretic junction: escape leads to voltage

Probability of

Quantum measurements

J. Claudon, A. Fay, E. Hoskinson, and O. Buisson, PRB2007

A nano-second flux pulse reduces the barrier

Hysteretic junction: escape leads to voltage

Probability of

Quantum state manipulation

An external driving force!

Outline

Driven anharmonic oscillator

- Introduction on Josephson junction
- quantum dynamics in a dc SQUID
- multilevel quantum system
- quantum or classical dynamics

Coupled circuit between a charge and a phase qubit

- asymmetry Cooper pair transistor
- entangled states
- tunable coupling
- resonant read-out
- Conclusion

Experimental set-up

- MW manipulation
- fast measurements

- courant bias
- voltage state of SQUID

Spectroscopy and relaxation measurements J. Claudon, A. Fay, L.P. Lévy, and O. Buisson (PRB2006)

Coherent oscillations in a dc SQUID

(J. Claudon F. Balestro, F. Hekking, and O. Buisson, PRL 2004)

Classical dynamics

Classical model fails to describe the $\Omega_{\rm RLO}\,$ versus MW amplitude in our device

A. Ratchov, PhD-thesis 2005

J. Claudon, A. Zazunov, F. Hekking, and O. B, arXiv:0709.3787

$$\ddot{\phi} + \alpha \dot{\phi} + \sin(\phi) = \eta + \varepsilon \sin(\omega \tau)$$

with $\dot{\phi} = \partial \phi / \partial \tau$

Beating phenomena exist in the classical model!

Gronbech&Cirillo PRL2005 J. Marchese et al cond-mat0509729

Rabi oscillations of a two level system

Strong deviation compare to Rabi prediction!

We must take into account the multi-level dynamics

Multilevel dynamics

Cross-over between two and multi-level

(J. Claudon, A. Zazunov, F. Hekking, and O. Buisson, arXiv:0709.3787)

Conclusion

Rabi like oscillations are not a quantum signature

 $\Omega_{\rm RLO}$ versus MW amplitude Ω_1 contains quantum signature

Classical theory does not explain the low amplitude dynamics when less than 4 levels are involved

Cross-over between two level and multi level dynamics

$$v_{01} - v_{12} = \Omega_1$$

Conditions to observe quantum effect in the Rabi oscillations: $\nu_{01} - \nu_{12} \ < 1/T_{2,Rabi}$

Outline

Driven anharmonic oscillator

- Introduction on Josephson junction
- quantum dynamics in a dc SQUID
- multilevel quantum system
- quantum or classical dynamics
- Coupled circuit between a charge and a phase qubit
 - asymmetry Cooper pair transistor
 - entangled states
 - tunable coupling
- Conclusion

Introduction of the two coupled qubits circuit

Interaction between two quantum systems : very rich physics

Coupled qubits circuit to realize two qubits gate operations (Control-NOT, i-SWAP,...)

Different circuits were considered recently:

Two charge qubits(NEC), flux qubits(Delft), phase qubits (Santa Barbara) quantronium (Saclay), phase qubits coupled by cavity bus (Yale,Boulder)

Fixed coupling by capacitance, inductance, cavity

Ideal procedure:

- qubits stay at the optimal points
- single qubit operation with coupling off
- two qubits operation with coupling on

Tunable coupling at the optimal points

Tunable inductive coupling between two flux qubits (NEC, Berkeley)

Tunable coupling between a phase qubit and a charge qubit

- SQUID Josephson junction size~ 10 μm^2
- Transistor Josephson junction size~ 0.02 μm^2

Asymmetry

coupling between the two qubits

Current biased dc SQUID: a phase qubit

Outline

Driven anharmonic oscillator

- Introduction on Josephson junction
- quantum dynamics in a dc SQUID
- multilevel quantum system
- quantum or classical dynamics

Coupled circuit between a charge and a phase qubit

- asymmetry Cooper pair transistor
- entangled states
- tunable coupling
- resonant read-out
- Conclusion

Asymmetric Cooper pair transistor: charge qubit

ACPT spectroscopy

Transistor frequency versus ng

Transistor frequency versus δ

Properties at the new optimal point

Driven anharmonic oscillator

- Introduction on Josephson junction
- quantum dynamics in a dc SQUID
- multilevel quantum system
- quantum or classical dynamics

Coupled circuit between a charge and a phase qubit

- asymmetry Cooper pair transistor
- entangled states
- tunable coupling
- resonant read-out
- Conclusion

Spectroscopy measurement of the two quantum systems

Coupled qubits spectroscopy

Spectroscopy at
$$I_{\text{bias}} = 1890 \text{ nA}$$

Entangled states between the two qubits

Entangled states between the two qubits

At n_a=1/2 resonant coupling at this working point

Spectroscopy versus V_q

Outline

Driven anharmonic oscillator

- Introduction on Josephson junction
- quantum dynamics in a dc SQUID
- multilevel quantum system
- quantum or classical dynamics

Coupled circuit between a charge and a phase qubit

- asymmetry Cooper pair transistor
- entangled states
- tunable coupling
- resonant read-out
- Conclusion

Spectroscopy of the coupled circuit

- SQUID and ACPT frequency are tunable over a large frequency range!
- The resonant frequency between the two qubits varies from 9 to 20.3 GHz !

Tunable coupling experience versus theory

(A. Fay, W. Guichard, E. Hoskinson, F. Hekking, L. Lévy, and OB, PRL07)

If symmetric transistor, $\lambda = \mu = 0$ No coupling!!

Outline

Driven anharmonic oscillator

- Introduction on Josephson junction
- quantum dynamics in a dc SQUID
- multilevel quantum system
- quantum or classical dynamics

Coupled circuit between a charge and a phase qubit

- asymmetry Cooper pair transistor
- entangled states
- tunable coupling
- resonant read-out
- Conclusion

Aurelien Fay Thesis

Quantronium read-out : classical Josephson junction $\omega_{01} << \omega_T$ In our case: $\omega_{01} \approx \omega_T$!!!

Measured contrast > 30% (not optimized)

Summary

Driven anharmonic oscillator

- quantum dynamics in a dc SQUID
- multilevel quantum system
- quantum or classical dynamics

Coupled circuit between a charge and a phase qubit

- asymmetry Cooper pair transistor
- entangled states
- tunable coupling
- resonant read-out