Generation and measurement of multi-qubit entanglement in circuit quantum electrodynamics

Leonardo Di Carlo Department of Applied Physics Yale University

College de France, June 15th, 2010

Pl's: Robert Schoelkopf Michel Devoret Steven Girvin

Collaborators

Experiment: Jerry Chow Blake Johnson David Schuster Johannes Majer Luigi Frunzio <u>Theory:</u> Jay Gambetta Lev Bishop Andreas Nunnenkamp Jens Koch Alexandre Blais

Matthew Reed Luyan Sun Eran Ginossar

PI's: Robert Schoelkopf Michel Devoret Steven Girvin

Outline

• What is quantum entanglement?

• How to detect it?

the complete way: quantum state tomography the scalable way: entanglement witnesses

- Example: 2- & 3-qubit entanglement in cQED processors algorithmic generation using C-Phase gates detection by joint qubit readout
- Outlook

What is entanglement?

`Entanglement is simply Schrodinger's name for superposition in a multi-particle system.`

Greenberger, Horne & Zeilinger (GHZ), Physics Today 1993

Wavefunction description of pure two-qubit states

for *N*=2 qubits:

$$|\psi\rangle = c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle$$

• normalization
$$\langle \psi | \psi
angle = 1$$

$$2^2$$
 complex numbers

• irrelevant global phase

A pure 2-qubit state is fully described by 6 real #s

When are two qubits entangled?

Two qubits are entangled when their joint wavefunction cannot be split into a product of individual qubit wavefunctions

$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$$
 vs $|\psi\rangle = |\psi_1^a\rangle \otimes |\psi_2^a\rangle + |\psi_1^b\rangle \otimes |\psi_2^b\rangle$

Some common terms:

Unentangled = separable = product state

Entangled = non-separable = non-product state

Some separable & entangled states

$$|\psi\rangle = \frac{1}{2} (|00\rangle + |01\rangle - |10\rangle + |11\rangle)$$

yes

Quantifying entanglement

Two qubits in a pure state

$$|\psi\rangle = c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle$$

are entangled if they have nonzero concurrence C

$$C(\psi) = 2 \left| c_{00} c_{11} - c_{01} c_{10} \right|$$

$$|\psi\rangle = \frac{1}{2} (|00\rangle + |01\rangle - |10\rangle + |11\rangle) \qquad C = 1$$

Quantifying entanglement – pure states

The concurrence is an *entanglement monotone:*

 $0 \le C(\psi) \le 1$

If $C(\psi_a) > C(\psi_b)$, we say state *a* is more entangled than state *b*. If $C(\psi_a) = 1$, we say state *a* is maximally entangled.

Example:

The singlet $|\Psi\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$ is maximally entangled. The state $|\Psi\rangle = \frac{1}{\sqrt{3}} |00\rangle + \frac{1}{\sqrt{3}} |10\rangle + \frac{1}{\sqrt{3}} |11\rangle$, with C = 2/3, is

entangled, but less entangled than the singlet.

Density-matrix description of mixed states

$$ho = |\psi\rangle\langle\psi|$$

for a pure state

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i} |$$
$$p_{i} \in [0,1], \sum_{i} p_{i} = 1$$

for a mixed state

Properties: $Dim[\rho] = 2^N \times 2^N$ $\rho = \rho^{\dagger}$ Hermitian $Tr[\rho] = 1$ Unity trace

Fully describing a 2-qubit mixed state requires **15** real #s

Quantifying entanglement – mixed states

The concurrence of a mixed state is given by

$$C(\rho) = \max\left\{0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4\right\}$$

The λ_i are the eigenvalues of the matrix $\sqrt{\rho \tilde{\rho}}$ in decreasing order, and $\tilde{\rho} = YY \rho^* YY$

- Yes, it's non-intuitive!
- A very non-linear function of $\,
 ho$
- Difficult to propagate experimental errors in tomography (systematics and noise) to error in C

Hill and Wootters, PRL (2007) Wootters, PRL (2008) Horodecki⁴, RMP (2009)

Getting ρ : quantum state tomography

Geometric visualization for *N*=1: The Bloch sphere

State tomography of qubit decay

Is there a similarly practical description for *N*=2 qubits?

Steffen et al., PRL (2006)

Generalizing the Bloch vector: The Pauli set

$$\rho = \frac{1}{4} \sum_{j,k \in \{i,x,y,z\}} \left\langle \boldsymbol{\sigma}_{j} \boldsymbol{\sigma}_{k} \right\rangle \, \boldsymbol{\sigma}_{j} \boldsymbol{\sigma}_{k}$$

The Pauli set P = the set of expectation values of the 16 2-qubit Pauli operators.

- gives a full description of the 2-qubit state
- is the extension of the Bloch vector to 2 qubits

One of them, $\langle II \rangle = 1$ always

generalizes to higher N

The two-qubit Pauli set can be divided into three sections:

- Polarization of Qubit 1
- Polarization of Qubit 2

$$\overline{P_1} = (\langle XI \rangle, \langle YI \rangle, \langle ZI \rangle)$$

$$\overline{P_2} = (\langle IX \rangle, \langle IY \rangle, \langle IZ \rangle)$$

Two-qubit correlations

 $\overline{\overline{P}}_{12} = (\langle XX \rangle, \langle XY \rangle, \langle XZ \rangle, \langle YX \rangle, \langle YY \rangle, \langle YZ \rangle, \langle ZX \rangle, \langle ZZ \rangle)$

Visualizing *N*=2 states: product states

$$|\psi\rangle = |00\rangle$$

Visualizing N=2 states: maximally entangled states

Extracting useful metrics from the Pauli set

State purity:

$$Tr[\rho^{2}] = \frac{1}{2^{N}} \boldsymbol{P} \bullet \boldsymbol{P}$$

Fidelity to a target state $|\Psi_{\mathrm{T}}
angle$:

$$F = \langle \boldsymbol{\psi}_{\mathrm{T}} | \boldsymbol{\rho} | \boldsymbol{\psi}_{\mathrm{T}} \rangle = \frac{1}{2^{N}} \boldsymbol{P} \bullet \boldsymbol{P}_{\mathrm{T}}$$

Two-qubit Concurrence:

$$C(\psi) = \sqrt{\frac{\overline{P_{12}} \bullet \overline{P_{12}} - 1}{2}}$$

Warning: for pure states only

Short-circuiting Concurrence

- Can we characterize (even possibly quantify) entanglement without reliance on C ?
- Can we place lower bounds on *C* without performing full state tomography?

Witnessing entanglement with a subset of the Pauli set

An *entanglement witness* is an observable W with a positive expectation value for all product states.

 $\langle W \rangle < 0 \implies$ state is entangled, *guaranteed*. $\langle W \rangle \ge 0 \implies$ witness simply doesn't know

Eisert et al., New J. Phys (2007)

Witnessing entanglement with a subset of the Pauli set

An *entanglement witness* is an observable W with a positive expectation value for all product states.

$$\langle W
angle < 0 \implies$$
 state is entangled, *guaranteed*.
 $\langle W
angle \ge 0 \implies$ witness simply doesn't know

• Witnesses require only a subset of the Pauli set!

• Example:
$$W = \frac{1}{4} (II + XX + YY + ZZ)$$

• This witness gives a lower bound on $C: -2\langle W \rangle \leq C$

Preparing and measuring entanglement in cQED

DiCarlo *et al.*, Nature (2009) Chow *et al.*, arXiv 0908.1955

DiCarlo *et al.*, arXiv 1004.4324 Reed *et al.*, arXiv 1004.4323

Cavity QED with wires

"**Circuit QED**" Blais *et al.,* Phys. Rev. A (2004)

Josephson-junction qubits

Transmission-line resonator

- mediates interaction between qubits
- protects qubits from continuum
- allows joint qubit readout

Expts: Majer, Chow *et al.*, Nature (2007) Sillanpää *et al.*, Nature (2007)

(Charge qubits / Yale) (Phase qubits / NIST)

Meet the quantum processors

Meet the quantum processors

Tunable artificial atoms

Transmon

$$L = \frac{L_{\rm J}}{\cos \delta}$$

Theo: J. Koch *et al.*, PRA (2007) Expt: J. Schreier *et al.*, PRB (2009) Review: Houck *et al.*, Quant. Int. Proc. (2009)

Spectroscopy of two qubits + cavity

One-qubit gates: X and Y rotations

One-qubit gates: X and Y rotations

One-qubit gates: X and Y rotations

Two-qubit gate: turn on interactions

Two-excitation manifold of system

- Transmon "qubits" have multiple levels...
- Avoided crossing (160 MHz)

 $\left|11\right\rangle \leftrightarrow \left|02\right\rangle$

Strauch *et al.* PRL (2003): proposed using interactions with higher levels for computation in phase qubits

Adiabatic conditional-phase gate

Implementing C-Phase with 1 fancy pulse

Adjust timing of flux pulse so that only quantum amplitude of $|11\rangle$ acquires a minus sign:

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{vmatrix} 00 \\ |01 \rangle \\ |10 \rangle \\ |10 \rangle$$

Entanglement on demand

- (1) Start in ground state: $|\Psi\rangle = |0\rangle \otimes |0\rangle$
- (2) $\pi/2$ rotation on each qubit yields a maximal superposition:

$$|\Psi\rangle = \frac{1}{2} (|0\rangle + |1\rangle) \otimes (|0\rangle + |1\rangle)$$
$$= \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$

(3) Apply 'c-phase' entangler:

$$\begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} | \Psi \rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle - |11\rangle)$$

No longer a product state!

(4) $\pi/2$ rotation on LEFT qubit:

$$|\text{Bell}\rangle = \frac{1}{\sqrt{2}} (|10\rangle + |01\rangle)$$

Ideally:
wavefunction
$$|\Psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

density matrix

$$\rho = |\Psi\rangle\langle\Psi|$$
$$= \frac{1}{2} (|00\rangle\langle00| + |00\rangle\langle11| + |11\rangle\langle00| + |11\rangle\langle11|$$

Expt'l state tomography

		Hill-Wootters
Bell state	Fidelity	Concurrence
$ 00\rangle + 11\rangle$	94%	90%
$ 00\rangle - 11\rangle$	94%	94%
$ 01\rangle + 10\rangle$	95%	92%
$ 01\rangle - 10\rangle$	93%	90%

Joint qubit readout via cavity

Schuster, Houck et al., Nature (2007)

Joint qubit readout via cavity

Direct access to qubit correlations

Problem: How to extract ρ from measurements of the form

$$\langle M \rangle = \langle ZI \rangle + \langle IZ \rangle + \langle ZZ \rangle$$
 ?

Answer: Combine joint readout with one-qubit pre-rotations

Example: Extracting $\langle YZ \rangle$ Apply $R_x^{+\pi/2}$, then measure: Apply $R_x^{-\pi/2} \overset{+}{\otimes} R_x^{+\pi}$, then measure: $Apply R_x^{-\pi/2} \overset{+}{\otimes} R_x^{+\pi}$, then measure: $-\langle YI \rangle - \langle IZ \rangle + \langle YZ \rangle$

 $2\langle \underline{\textbf{YZ}}
angle$

- It is possible to acquire correlation info. with one measurement channel!
- All Pauli set components are obtained by linear operations on raw data.

Filipp *et al.*, PRL (2009)

Experimental N=2 Pauli sets

How quantum is all this, really?

Entangled-state movie

Prepare a Bell state and Rotate left qubit about *y*-axis by θ

Bell inequality violation

Clauser, Horne, Shimony & Holt (1969)

LHV bound: $|\langle CHSH \rangle| \le 2$

not a foolproof test of hidden variables... (system has loopholes)

Also UCSB group,

closing detection loophole, Ansmann et al., Nature (2009)

Bell inequality as an entanglement witness

Clauser, Horne, Shimony & Holt (1969)

Separable bound: $|\langle CHSH \rangle| \leq \sqrt{2}$

state is clearly highly entangled!

Witnessing entanglement

- Entanglement is witnessed (by either W_1 or W_4) at all angles!
- Two of the witnesses were looking the other way!

Beyond two qubits

Exploration of quantum error correction starts with three-qubit entanglement

DiCarlo *et al.*, arXiv 1004.4324 (2010) Reed et al., arXiv 1004.4323 (2010)

The density matrix for *N*=3

$$\rho = \frac{1}{8} \sum_{j,k,l \in \{i,x,y,z\}} \left\langle \boldsymbol{\sigma}_{j} \boldsymbol{\sigma}_{k} \boldsymbol{\sigma}_{l} \right\rangle \boldsymbol{\sigma}_{j} \boldsymbol{\sigma}_{k} \boldsymbol{\sigma}_{l}$$

Knowing the three-qubit state = expectation values of **63** Pauli operators

$$\overline{P_1} = (\langle XII \rangle, \langle YII \rangle, \langle ZII \rangle)$$

$$\overline{P_2} = (\langle IXI \rangle, \langle IYI \rangle, \langle IZI \rangle)$$

$$\overline{P_3} = (\langle IIX \rangle, \langle IIY \rangle, \langle IIZ \rangle)$$

Polarization of qubit 1 Polarization of qubit 2

Polarization of qubit 3

 $\overrightarrow{P_{12}} = (\langle XXI \rangle, \langle XYI \rangle, \langle XZI \rangle, \langle YXI \rangle, \langle YYI \rangle, \langle YZI \rangle, \langle ZXI \rangle, \langle ZYI \rangle, \langle ZZI \rangle)$ $\overrightarrow{P_{13}} = (\langle XIX \rangle, \langle XIY \rangle, \langle XIZ \rangle, \langle YIX \rangle, \langle YIY \rangle, \langle YIZ \rangle, \langle ZIX \rangle, \langle ZIY \rangle, \langle ZIZ \rangle)$ $\overrightarrow{P_{23}} = (\langle IXX \rangle, \langle IXY \rangle, \langle IXZ \rangle, \langle IYX \rangle, \langle IYY \rangle, \langle IYZ \rangle, \langle IZX \rangle, \langle IZZ \rangle, \langle IZZ \rangle)$

3-qubit correlations

 $\overrightarrow{P}_{123} = \left(\langle XXX \rangle, \langle XXY \rangle, \langle XXZ \rangle, \dots, \langle ZZX \rangle, \langle ZZY \rangle, \langle ZZZ \rangle \right)$

3-Qubit state tomography

The trick still works!

Combining joint readout with one-qubit "analysis" gives access to all 3-qubit Pauli operators, only more rotations are necessary.

$$M = |000
angle\langle000|$$

 \propto ZII + IZI + IIZ + ZZI + ZIZ + IZZ + ZZZ

Example: extract $\langle ZZZ \rangle$

no pre-rotation: $+\langle ZII \rangle + \langle IZI \rangle + \langle IIZ \rangle + \langle ZZI \rangle + \langle ZIZ \rangle + \langle IZZ \rangle + \langle ZZZ \rangle$ $R_x(\pi)$ on Q1 and Q2: $-\langle ZII \rangle - \langle IZI \rangle + \langle IIZ \rangle + \langle ZZI \rangle - \langle ZIZ \rangle - \langle IZZ \rangle + \langle ZZZ \rangle$ $R_x(\pi)$ on Q1 and Q3: $-\langle ZII \rangle + \langle IZI \rangle - \langle IIZ \rangle - \langle ZZI \rangle + \langle ZIZ \rangle - \langle IZZ \rangle + \langle ZZZ \rangle$ $R_x(\pi)$ on Q2 and Q3: $+\langle ZII \rangle - \langle IZI \rangle - \langle IIZ \rangle - \langle ZZI \rangle - \langle ZIZ \rangle + \langle IZZ \rangle + \langle ZZZ \rangle$

Experiment: Doing nothing... but very well!

A less trivial separable state

Two-qubit entanglement in a 3-qubit register

Three-qubit entanglement

What is special about GHZ?

• 64 possible ir	nstruction	sets
------------------	------------	------

G	Н	Ζ	G	Н	Ζ
X Y	X Y	X Y	X Y	X Y	X Y
X Y $+1$ -1 $+1$ -1 $+1$ -1 $+1$ -1 $+1$ -1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
+1 -1 +1 -1 +1 -1	-1 +1 -1 +1 -1 +1	+1 -1 -1 +1 -1 -1	-1 -1 -1 -1 -1 -1	-1 +1 -1 +1 -1 +1	$^{+1}$ -1 -1 +1 -1 -1
+1 -1	-1 -1	+1 +1	-1 -1 -1	-1 -1	+1 +1
+1 -1 +1 -1 +1 1	-1 -1 -1 -1 1 1	+1 -1 -1 +1 1 1	-1 -1 -1 -1 -1 -1	-1 -1 -1 -1 1 1	$+1 -1 +1 \\ -1 +1 \\ 1 -1 $
TI -1	-1 -1	-1 -1	-1 -1	-1 -1	-1 -1

- 64 possible instruction sets
- Imposing XYY = -1reduces the instruction sets to 32

G		I	Н		Ζ	
X	Y	X		Y X	X Y	
$\begin{array}{c} X \\ +1 \\ +1 \\ +1 \\ +1 \\ +1 \\ +1 \\ +1 \\ $	$\begin{array}{c} Y \\ + + + + + + + + + + + + + + + + + +$				$\begin{array}{c} Y \\ -1 \\ -1 \\ +1 \\ +1 \\ -1 \\ +1 \\ +1 \\ +1$	
$-1 \\ -1 \\ 1$	-] -]		L -] +]			
-1 -1	-] -]		[+] [-]		1 + 1 1 - 1	
-1	-]		l -	L -	l -1	

- 64 possible instruction sets
- Imposing XYY = -1reduces the instruction sets to 32
- Imposing YXY = -1reduces the instruction sets to 16

G	Н	Ζ	
X Y	X Y	X Y	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} +1 & +1 \\ +1 & +1 \\ -1 & -1 \\ -1 & -1 \\ +1 & -1 \\ +1 & -1 \\ +1 & +1 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

- 64 possible instruction sets
- Imposing XYY = -1reduces the instruction sets to 32
- Imposing YXY = -1reduces the instruction sets to 16
- Imposing YYX = -1reduces the instruction sets to 8

G		Н		Ζ		
	X	Y	X	Y	X	Y
	+1 +1 +1 +1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	+1 +1 -1 +1 +1 -1 -1 -1	+1 -1 +1 -1 +1 +1 +1 +1	+1 -1 +1 +1 +1 +1 +1	-1 +1 +1 +1 -1 +1 +1 +1	-1 +1 -1 +1 +1 +1 +1

 $\Rightarrow XXX = -1$

None of the 8 remaining instruction sets is consistent with XXX = +1 !!!!

The bit-flip error correction code

Fast reset: Reed et al., APL (2010)

Encoding a logical qubit for error correction

Encoding a logical qubit for error correction

Encoding a logical qubit for error correction

Witnessing entanglement with Mermin-Bell inequalities

Tóth & Gühne, PRA (2005) Roy, PRL (2005)

Witnessing entanglement with Mermin-Bell inequalities

Roy, PRL (2005)

• The quality of a quantum processor relies on its ability to generate near-perfect multi-qubit entanglement at intermediate steps of a computation.

• A quantum computer engineer needs to detect this entanglement as a way to benchmark or debug the processor.

• Full state tomography is OK for few-qubit registers, but witnesses are the scalable way of detecting entanglement.

• Multi-qubit (3+) entanglement is required for quantum error correction

Summary in pictures

Yale circuit QED team members 2010

Alexandre Blais PI's: Profs. Rob Schoelkopf, Michel Devoret, and Steven Girvin

Research scientists: Dr. Luigi Frunzio

Experiment: Jerry Chow Matthew Reed Blake Johnson Dr. Luyan Sun

Dr. David Schuster

Theory: Dr. Jay Gambetta Dr. Lev Bishop Dr. Eran Ginossar Chad Rigetti

Expt'l contributions:

Vladimir Manucharyan Dr. Etienne Boaknin Dr. Markus Brink

Funding:
Merci de votre attention!