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• What is quantum entanglement?

• Outlook

• How to detect it?
the complete way: quantum state tomography
the scalable way: entanglement witnesses

• Example:  2- & 3-qubit entanglement in cQED processors
algorithmic generation using C-Phase gates
detection by joint qubit readout 

Outline



What is entanglement?

`Entanglement is simply Schrodinger’s name for superposition
in a multi-particle system.` 

Greenberger, Horne & Zeilinger (GHZ), 
Physics Today 1993



for N=2 qubits:

A pure 2-qubit state is fully described by 6 real #s

00 01 10 110 10 0 10 11c c c cψ = + + +

Wavefunction description of pure two-qubit states

• normalization

• irrelevant global phase

1ψ ψ =
22 complex numbers   -



21ψ ψψ= ⊗

Two qubits are entangled when their joint wavefunction cannot
be split into a product of individual qubit wavefunctions

Some common terms:

Entangled = non-separable = non-product             state

Unentangled = separable = product                       state

2 21 1
a b baψ ψ ψ ψψ = ⊗ + ⊗vs

When are two qubits entangled?



1 11 1ψ = ⊗ =

( )0 11
2

1 0ψ = −

( )0 00 11
2

11 10ψ = + + +

( )0 00 11
2

11 10ψ = + − +

Some separable & entangled states

( ) ( )0 11
2

0 11
2

= + ⊗ +

State Entangled?

no

yes

no

yes

The Bell singlet



( )0 11
2

1 0ψ = −

( )0 00 11
2

11 10ψ = + + +

( )0 00 11
2

11 10ψ = + − +

Quantifying entanglement

00 11 01 102)(C c c c cψ = −

00 01 10 110 10 0 10 11c c c cψ = + + +

Two qubits in a pure state

are entangled if they have nonzero concurrence

11ψ = 0C =

C

0C =

1C =

1C =



Quantifying entanglement – pure states

0 1)(C ψ≤ ≤

The concurrence is an entanglement monotone:

If                            , we say state a is more entangled than state b.( () )a bC Cψ ψ>

If                  , we say state a is maximally entangled.)( 1aC ψ =

Example:

The singlet                                     is maximally entangled.

The state                                                       , with               ,  is

entangled, but less entangled than the singlet.

( )0 11
2

1 0ψ = −

1 1 1
3 3

0 0 1
3

0 1 1ψ = + + 2 / 3C =



Tr[ ] 1ρ =

†ρ ρ=

ρ ψ ψ=

Hermitian

Unity trace

for a pure state

i i i
i

pρ ψ ψ=∑
[0,1], 1i i

i
p p∈ =∑

for a mixed state

Fully describing a 2-qubit mixed state requires 15 real #s

Dim[ ] 2 2N Nρ = ×

Density-matrix description of mixed states

Properties:



Quantifying entanglement – mixed states

The concurrence of a mixed state is given by

The       are the eigenvalues of the matrix  
in decreasing order, and

{ }1 2 3 4) max 0,(C ρ λ λ λ λ− − −=

iλ ρρ
*YY YYρ ρ=

• Yes, it’s non-intuitive! 

• A very non-linear function of 

• Difficult to propagate experimental errors in
tomography (systematics and noise) to error in  

ρ

Hill and Wootters, PRL (2007)
Wootters, PRL (2008)

Horodecki4, RMP (2009)

C



Getting      : quantum state tomographyρ



1 ( , , ) ( , , )
2 2
I X Y Z X Y Z= + ⋅

Bloch vector 
(NMR)

Blochv


x

y

z

Blochv


1Blochv =


1Blochv <


pure state

mixed state

{ , , , }

1  
2 j y

j j
i x z

σ σρ
∈

= ∑

Geometric visualization for N=1: The Bloch sphere



Steffen et al., PRL (2006)

State tomography of qubit decay

Is there a similarly practical description for N=2 qubits? 



One of them,     
always

, { , , , }

1  
4 j k i

k
y z

j
x

k jσρ σσ σ
∈

= ∑

( )1 , ,P X YI I IZ=• Polarization of Qubit 1

• Polarization of Qubit 2

• Two-qubit correlations

( )2 , ,I IP X Y ZI=

( )12 , , , , , , , ,X Y Z X Y Z XX X X Y Y ZP Y ZY ZZ=

The two-qubit Pauli set can be divided into three sections:

The Pauli set          = the set of expectation values of the 16
2-qubit Pauli operators.

• gives a full description of the 2-qubit state
• is the extension of the Bloch vector to 2 qubits
• generalizes to higher N 

1II =

P

Generalizing the Bloch vector: The Pauli set



00ψ =

( ) ( )0 11
2

0 1ψ = + ⊗ −

1

0

-1

1

0

-1
00

01
10

11 00 01 10 11

Re( )ρ Im( )ρ

1P 2P 12P

00
01

10
11 00 01 10 11

Visualizing N=2 states: product states

These plots are theory



( )0 11
2

0 1ψ = +

( )0 00 11
2

11 10ψ = + − +

1

0

-1

Re( )ρ Im( )ρ

1

0

-1
00

01
10

11 00 01 10 11

00
01

10
11 00 01 10 11

Visualizing N=2 states: maximally entangled states

These plots are theory



2 1Tr[ ]
2Nρ = •P P

T T
1

2 TNF ψ ρ ψ= = •P P

12 12 1( )
2

P PC ψ • −=

State purity:

Fidelity to a target state          :Tψ

Two-qubit Concurrence:
Warning:
for pure states only

0C = 1C =

Extracting useful metrics from the Pauli set 



Short-circuiting Concurrence

• Can we characterize (even possibly quantify) entanglement   
without reliance on ? 

• Can we place lower bounds on without performing full
state tomography?

C
C



0W >
0W <

Witnessing entanglement with a subset of the Pauli set

An entanglement witness is an observable        with a positive 
expectation value for all product states.

0   W < ⇒ state is entangled, guaranteed.

0   W ≥ ⇒ witness simply doesn’t know

W

Eisert et al., New J. Phys (2007)



Witnessing entanglement with a subset of the Pauli set

An entanglement witness is an observable        with a positive 
expectation value for all product states.

0   W < ⇒ state is entangled, guaranteed.

0   W ≥ ⇒ witness simply doesn’t know

2 W C− ≤• This witness gives a lower bound on :

W

• Witnesses require only a subset of the Pauli set!

( )1
4

I XI X ZW ZYY= + + +
• Example:

C



Preparing and measuring entanglement in cQED

DiCarlo et al., Nature (2009)
Chow et al., arXiv 0908.1955

DiCarlo et al., arXiv 1004.4324
Reed et al., arXiv 1004.4323



Cavity QED with wires

Josephson-junction
qubits

Transmission-line resonator

Blais et al., Phys. Rev. A (2004)
“Circuit QED”

Expts: Majer, Chow et al.,  Nature (2007)       (Charge qubits / Yale)
Sillanpää et al., Nature (2007)  (Phase qubits / NIST)

• mediates interaction between qubits
• protects qubits from continuum
• allows joint qubit readout



2009 model - 2 qubits

Meet the quantum processors



Meet the quantum processors

2010 model - 4 qubits



290 µm
“Cooper-pair box 

inside”

Transmon

Tunable artificial atoms

J

cos
LL
δ

= C

E
ne

rg
y

01ω
12ω

Junction phase

2
1

0

δ
Theo: J. Koch  et al., PRA (2007)
Expt: J. Schreier et al., PRB (2009)
Review: Houck et al., Quant. Int. Proc. (2009) 



Spectroscopy of two qubits + cavity

Qubit-qubit swap interaction

cavity

left qubit

right qubit

Cavity-qubit interaction
Vacuum Rabi splitting

RV
Background:
Majer et al., Nature (2007)
Wallraff et al., Nature (2004)Flux bias on right transmon (a.u.)



Preparation
1-qubit rotations
Measurement

cavity I

One-qubit gates: X and Y rotations

RV

Lcos(2 )f tπ

Lf

x

y

z

Flux bias on right transmon (a.u.)



Preparation
1-qubit rotations
Measurement

cavity I

One-qubit gates: X and Y rotations

RV

Rcos(2 )f tπ

Rf

x

y

z

Flux bias on right transmon (a.u.)



Preparation
1-qubit rotations
Measurement

cavity Q

One-qubit gates: X and Y rotations

Rf

RV

Rsin(2 )f tπ

x

y

z

Flux bias on right transmon (a.u.) see
J. Chow et al., PRL (2009)

Fidelity = 99%



cavity

Conditional
phase gate

Use control lines to push 
qubits near a resonance

RV

RVFlux bias on right transmon (a.u.)

Two-qubit gate: turn on interactions



02
11

Two-excitation 
manifold

Two-excitation manifold of system

• Transmon “qubits” have 
multiple levels…

Strauch et al. PRL (2003): 
proposed using interactions with higher levels for 
computation in phase qubits

• Avoided crossing (160 MHz)

11 20↔

Flux bias on right transmon (a.u.)



Flux bias on right transmon (a.u.)

11  1e1 11 iϕ→

01   e01 01iϕ→

10  0e1 10 iϕ→

0

2 ( )
ft

a a
t

f t dtϕ π δ= − ∫

Adiabatic conditional-phase gate

10

01

11

2-excitation
manifold

1-excitation
manifold

ζ

0

11 10 01 2 ( )
ft

t

t dtϕ ϕ ϕ π ζ= + − ∫

02
01 10f f+



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

U

 
 
 =
 
 − 

00 1001 11

00

10

01

11

Adjust timing of flux pulse so that 
only quantum amplitude of            
acquires a minus sign:

11

01

10

11

1 0 0 0
0 0 0
0 0 0
0 0 0

i

i

i

e
e

e

U
ϕ

ϕ

ϕ

 
 
 =
 
 
 

00 1001 11

00

10

01

11

Implementing C-Phase with 1 fancy pulse

30 ns

11C-Phase11



Entanglement on demand

/2
yRπ

0

0

ρ



Entanglement on demand
/2

yRπ /2
yRπ

/2
yRπ

0

0
11 ρ

( ) ( )

( )

1
2
1

0 1

0

0 1

0 01 11
2

01

Ψ = + ⊗ +

= + + +

(2)           rotation on each qubit 
yields a maximal superposition:

/ 2π

0 0Ψ = ⊗

(1) Start in ground state:



Entanglement on demand
/2

yRπ /2
yRπ

/2
yRπ

0

0
11 ρ

( )

1 0 0 0
0 1 0 0 1
0 0 1 0 2
0 0

0 0 10 1 1

0

0 1

1

+ 
 +  Ψ = + + −
 +
 

− 

(3) Apply ‘c-phase’ entangler:

No longer a product state!

(4)            rotation on LEFT qubit:

( )1Bell
2

1 00 1= +

/ 2π



Entanglement on demand

ρ = Ψ Ψ

( )0 11
2

0 1Ψ = +

( )0 0 0 10 0 0 1 1 01 0 1
2

11 11= + + +

Ideally:

wavefunction

density matrix

Re( )ρ

Expt’l state tomography

/2
yRπ /2

yRπ

/2
yRπ

0

0
10 ρ



Re( )ρ

/2
yRπ /2

yRπ

/2
yRπ

0

0

ij ρ

Bell state       Fidelity    Concurrence
00 11+
00 11−
01 10+
01 10−

94%               90% 

94%               94% 

95%               92% 

93%               90% 

Hill-Wootters

Entanglement on demand



C
av

ity
 tr

an
sm

is
si

on

Frequency

11 10 01 00

Joint qubit readout via cavity
C

av
ity

 tr
an

sm
is

si
on

“Strong dispersive cQED”

0

1
1ε >

1ε <

2χL

2χR

2 2χ χ+L R

Schuster, Houck et al., Nature (2007) 

4χ =R  MHz
13χ =L  MHz

1κ =  MHz

in

out



Joint qubit readout via cavity
C

av
ity

 tr
an

sm
is

si
on

Frequency

11 10 01 00 Measure cavity transmission:
“Are qubits both in their 

ground state?”
0000M =
Z II ZZ Z∝ + +

in

out

time

tra
ns

m
itt

ed
vo

lta
ge

yes!

no!



Direct access to qubit correlations

Answer: Combine joint readout with one-qubit pre-rotations

• It is possible to acquire correlation info. with one measurement channel! 

+
Apply                &          , then measure:

/2
xR π±

0,
xR π

Joint Dispersive
Readout

00 00

Z IZ

M

I ZZ

= =

+ +

YI I YZ Z+ +

Y II YZ Z− − +

2 YZ

Example: Extracting YZ

/2
xR π+Apply               ,  then measure:

/2
xR π−

xR π+

• All Pauli set components are obtained by linear operations on raw data.

Problem:  How to extract      from measurements of the form

Z II ZZM Z= + +

ρ
?

Filipp et al., PRL (2009)



10ψ =

( )0 11
2

0 1ψ = +

( )0 00 11
2

11 10ψ = + − +

( )0 00 11
2

11 10ψ = − + −

Experimental N=2 Pauli sets

separable
highly-entangled



secret
meeting
place

If asked X,            
say +1
If asked Y, 
say -1

Michel Benjamin

If asked X,            
say +1
If asked Y, 
say -1

              
1   1      1 1      1   1
1   1      1 1      1   1
1   1      1 1      1   1
1   1      1 1      1   1
1   1      1 1      1   1
1   1  

              

 

 X Y ZX Y Z
+ + + − + +
+ + + − − −
+ + − + + +
+ + − + − −
− − + − + +
− −    1 1      1   1

1   1      1 1      1   1
1   1      1 1      1   1

+ − − −
− − − + + +
− − − + − −

1/ 8   
1/ 8
1/ 8   
1/ 8  
1/ 8  
1/ 8  
1/ 8  
1/ 8  

probability
Instruction sets

How quantum is all this, really?



Entangled-state movie

/2
yRπ

yRθ

/2
yRπ

0

0
10

θ

Prepare a Bell state and
Rotate left qubit about 
y-axis by  



Bell inequality violation

θ x

x’z’
z

Clauser, Horne,
Shimony & Holt (1969)

2CHSH ≤
LHV bound:

Also UCSB group, 
closing detection loophole, Ansmann et al., Nature (2009)

CHSH operator = entanglement witness 

' 'X ZC X X Z ZXSH ZH = − + +′ ′

' 'X ZC X X Z ZXSH ZH = + − +′ ′

not a foolproof 
test of 

hidden variables…
(system has loopholes)

2.61 0.04±



Bell inequality as an entanglement witness

θ x

x’z’
z

Clauser, Horne,
Shimony & Holt (1969)

2CHSH ≤
Separable  bound:

CHSH operator = entanglement witness 

' 'X ZC X X Z ZXSH ZH = − + +′ ′

' 'X ZC X X Z ZXSH ZH = + − +′ ′

2.61 0.04±

state is clearly 
highly entangled!



Witnessing entanglement

/2
yRπ

yRθ

/2
yRπ

0

0
10

• Entanglement is witnessed (by either W1 or W4) at all angles!
• Two of the witnesses were looking the other way!

Entanglement
witnessed!

( )2
1 1
4

X YYW X ZZ= + − −

( )1
1 1
4

X YYW X ZZ= − + −

( )3
1 1
4

X YYW X ZZ= − − +

( )4
1 1
4

X YYW X ZZ= + + +

Entanglement
not witnessed

88%C⇒ ≥



Beyond two qubits

Exploration of quantum error correction starts with three-qubit entanglement 

DiCarlo et al., arXiv 1004.4324 (2010)
Reed et al., arXiv 1004.4323 (2010)



( )1 , ,P X YII II IZI=

( )3 , ,I IP X YI I ZII=

Knowing the three-qubit state = expectation values of 63 Pauli operators

Polarization of qubit 1

Polarization of qubit 2

2-qubit correlations

( )2 , ,I II IP X Y IIZ=

( )12 , , , , , , , ,I I I I IX YX X X Y Y Y ZP ZZ X Y ZI I IX Y IZZ=

3-qubit correlations

Polarization of qubit 3

( )13 , , , , , , , ,X Y Z X YI IX X X Y Y Y ZP ZI I I IZ X YI I ZZI=

( )23 , , , , , , , ,X Y Z X YX XI I I I I I IP IX Y Y YZ X YZ Z ZIZ=

( )123 , , ,       ...    , , ,X X X ZX Y Z ZX X X Z ZX Y ZP ZZ=

, , { , , , }

1  
8 l l

j k l
j jk

i x
k

y z
σ σσ σρ σ σ

∈

= ∑

The density matrix for N=3



The trick still works! 
Combining joint readout with one-qubit “analysis” gives access to all 3-qubit 
Pauli operators, only more rotations are necessary. 

Example: extract 

I Z I ZI I Z I Z Z ZZ I I Z Z I ZI Z Z+ + + + + ++

4 ZZZ

no pre-rotation:
on Q1 and Q2:
on  Q1 and Q3:
on Q2 and Q3:

0,
xR π

0,
xR π

0,
xR π

Joint 
Readout

    
000 000

M =

( )xR π
( )xR π
( )xR π

ZZZ

I Z I ZI I Z I Z Z ZZ I I Z Z I ZI Z Z− + + − − +−
I Z I ZI I Z I Z Z ZZ I I Z Z I ZI Z Z+ − − + − +−
I Z I ZI I Z I Z Z ZZ I I Z Z I ZI Z Z− − − − + ++

3-Qubit state tomography

000 000M =

I Z I ZI I Z I Z ZI Z ZZ I I Z Z I Z Z∝ + + + + + +



1P 3P2P 12P 13P 23P

Experiment: Doing nothing… but very well!

123P

0

0

0
T 000ψ =

99%F ψ ρ ψ= =T TFidelity 



1P 3P2P 12P 13P 23P

A less trivial separable state

123P

0

0

0

xRπ

98%F ψ ρ ψ= =T T

T 001ψ =



1P 3P2P 12P 13P 23P

Two-qubit entanglement in a 3-qubit register

123P

0

0

0 /2
yRπ

/2
yRπ /2

yRπ

01
( )T

1
2

0 10 10ψ = ⊗ +

94%F ψ ρ ψ= =T T



( )T 00 1
2

0 11 1ψ = +

0

0

0 /2
yRπ

/2
yRπ

/2
yRπ

/2
yRπ

/2
yRπ

01

10

Three-qubit entanglement

1P 3P2P 12P 13P 23P 123P

88%F ρ= = GHZ GHZ

Greenberger-Horne-Zeilinger state



What is special about GHZ?

88%F ρ= = GHZ GHZ

• Useful for one-shot (non-statistical) tests of QM. 
Four maximal 3-qubit correlators

are incompatible with local realism. 

• States                                 are parity eigenstates
useful for basic quantum error correction:

1X X YX Y YX YYY X X= − = − = − =

1I ZZ Z IZ I ZZ= = =

1000 11α β+



Secret
GHZ
meeting

If asked X,            
say +1
If asked Y, 
say -1

Greenberger Horne Zeilinger

3QE is qualitatively different: the Mermin-GHZ test



             
1   +1      +1  +1     +1   +1
1   +1      +1  +1     +1    -1
1   +1      +1  +1      -1   +1
1   +1      +1  +1      -1    -1
1   +1      +1  

        

 -1     +1   +1

    

1   

 

+1 

X Y X YX Y
+
+
+
+
+
+      +1   -1     +1    -1

1   +1      +1   -1      -1   +1
1   +1      +1   -1      -1    -1
1   +1       -1  +1     +1   +1
1   +1       -1  +1     +1    -1
1   +1       -1  +1      -1   +1
1   +1   

+
+
+
+
+
+     -1  +1      -1    -1

1   +1       -1   -1     +1   +1
1   +1       -1   -1     +1    -1
1   +1       -1   -1      -1   +1
1   +1       -1   -1      -1    -1
1    -1      +1  +1     +1   +1
1    -1

+
+
+
+
+
+       +1  +1     +1    -1

1    -1      +1  +1      -1   +1
1    -1      +1  +1      -1    -1
1    -1      +1   -1     +1   +1
1    -1      +1   -1     +1    -1
1    -1      +1   -1      -1   +1
1    -

+
+
+
+
+
+ 1      +1   -1      -1    -1

1    -1      +1  +1     +1   +1
1    -1       -1  +1     +1    -1
1    -1       -1  +1      -1   +1
1    -1       -1  +1      -1    -1
1    -1       -1   -1     +1   +1
1 

+
+
+
+
+
+    -1       -1   -1     +1    -1

1    -1       -1   -1      -1   +1
1    -1       -1   -1      -1    -1
+
+

             
1   +1      +1  +1     +1   +1
1   +1      +1  +1     +1    -1
1   +1      +1  +1      -1   +1
1   +1      +1  +1      -1    -1
1   +1      +1  

        

 -1     +1   +1

    

1   

 

+1 

X Y X YX Y
−
−
−
−
−
−      +1   -1     +1    -1

1   +1      +1   -1      -1   +1
1   +1      +1   -1      -1    -1
1   +1       -1  +1     +1   +1
1   +1       -1  +1     +1    -1
1   +1       -1  +1      -1   +1
1   +1   

−
−
−
−
−
−     -1  +1      -1    -1

1   +1       -1   -1     +1   +1
1   +1       -1   -1     +1    -1
1   +1       -1   -1      -1   +1
1   +1       -1   -1      -1    -1
1    -1      +1  +1     +1   +1
1    -1

−
−
−
−
−
−       +1  +1     +1    -1

1    -1      +1  +1      -1   +1
1    -1      +1  +1      -1    -1
1    -1      +1   -1     +1   +1
1    -1      +1   -1     +1    -1
1    -1      +1   -1      -1   +1
1    -

−
−
−
−
−
− 1      +1   -1      -1    -1

1    -1      +1  +1     +1   +1
1    -1       -1  +1     +1    -1
1    -1       -1  +1      -1   +1
1    -1       -1  +1      -1    -1
1    -1       -1   -1     +1   +1
1 

−
−
−
−
−
−    -1       -1   -1     +1    -1

1    -1       -1   -1      -1   +1
1    -1       -1   -1      -1    -1
−
−

G       H      Z G       H      Z
3QE is qualitatively different: the Mermin-GHZ test

• 64 possible instruction sets



G       H      Z

3QE is qualitatively different: the Mermin-GHZ test

• Imposing
reduces the instruction sets to 32 

1XYY = −
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None of the 8 remaining instruction sets 
is consistent with                    !!!!1XXX = +
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Encoding a logical qubit for error correction
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Encoding a logical qubit for error correction

/2
yRπ

0

0

/2
yRπ

/2
yRπ

/2
yRπ

01

10

/2
( )nRπ
φ0

Bi-separable bound

W-class bound

Strictly-GHZ 
Class 3QE

W-class bound

repetition code

( )0

GHZ

10 1
2

01 1iie

φ

φ

=

−



Mermin, PRL (1990)

X YM XX X YY YXYXY= − − −

Y XM YY Y XX XYXYX= − − −

Roy, PRL (2005)
Tóth & Gühne, PRA (2005) 

Witnessing entanglement with Mermin-Bell inequalities

2M ≤
Local-Hidden-Variable
bound

3.4 0.1±



Mermin, PRL (1990)

X YM XX X YY YXYXY= − − −

Y XM YY Y XX XYXYX= − − −

Roy, PRL (2005)
Tóth & Gühne, PRA (2005) 

Witnessing entanglement with Mermin-Bell inequalities

2M ≤
Bi-separable bound

1M ≤
Separable bound:

• Genuine 3-qubit entanglement

3.4 0.1±



• The quality of a quantum processor relies on its ability to generate
near-perfect multi-qubit entanglement at intermediate steps of a computation.

• A quantum computer engineer needs to detect this entanglement as a way to 
benchmark or debug the processor.

• Full state tomography is OK for few-qubit registers, but witnesses are the 
scalable way of detecting entanglement.

• Multi-qubit  (3+) entanglement is required for quantum error correction

Outlook



Summary in pictures

Few-qubit processors
based on circuit QED

C-phase gate
Generation and 

detection of 
2 & 3-qubit 

entanglement
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2 21 1
a b baψ ψ ψ ψψ = ⊗ + ⊗

vs

0C =

1C =

11 10 01 00

Joint qubit readout
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