Metrology of Entangled States in Circuit QED

Applied Physics + Physics Yale University

<u>Pl's:</u> Rob Schoelkopf Michel Devoret Steven Girvin

eo DiCarlo Andrew Houck **David Schuster** Hannes Majer **Jerry Chow** Joe Schreier **Blake Johnson** Luigi Frunzio Theory Jens Koch **Alexandre Blais** Florian Marquardt Eli Luberoff Lars Tornberg Terri Yu

Metrology of Entangled States in Circuit QED

Applied Physics + Physics Yale University

<u>Pl's:</u> Rob Schoelkopf Michel Devoret Steven Girvin

Princeton

Vienna

Andrew Houck **David Schuster** Hannes Majer **Jerry Chow** Joe Schreier **Blake Johnson** Luigi Frunzio Theory Jens Koch

eo DiCarlo

IQC/Waterloo U. Sherbrooke

Göteborg

 Alexandre Blais
Florian Marquardt Eli Luberoff
Lars Tornberg Terri Yu

Recent Reviews

'Wiring up quantum systems' R. J. Schoelkopf, S. M. Girvin Nature 451, 664 (2008)

'Superconducting quantum bits' John Clarke, Frank K. Wilhelm *Nature* **453**, 1031 (2008)

Quantum Information Processing 8 (2009) ed. by A. Korotkov

Overview

- 'Transmon' qubit, insensitive to charge noise
- Circuit QED: using cavity bus to couple qubits
- Two qubit gates and generation of Bell's states
- "Metrology of entanglement" using joint cQED msmt.
- Demonstration of Grover and Deutsch-Josza algorithms DiCarlo et al., cond-mat/0903.2030
 Nature, (in press, June 2009)

Quantum Computation and NMR of a Single 'Spin'

Electrical circuit with two quantized energy levels is like a spin -1/2.

'Transmon' Cooper Pair Box: Charge Qubit that Works!

Added metal = capacitor & antenna

Transmon qubit insensitive to 1/f electric fields

* Theory: J. Koch et al., PRA (2007); Expt: J. Schreier et al., PRB (2008)

Flux qubit + capacitor: F. You et al., PRB (2006)

'Transmon' Cooper Pair Box: Charge Qubit that Works!

Outsmarting Noise: Sweet Spot

Strongstansitivitynsformerteseedadephoise!

Vion et al., Science 296, 886 (2002)

"Eliminating" Charge Noise with Better Design

Koch et al., 2007; Houck et al., 2008

Coherence in Transmon Qubit

Cavity Quantum Electrodynamics (cQED)

2g = vacuum Rabi freq.

 κ = cavity decay rate

 γ = "transverse" decay rate

<u>Strong Coupling</u> = $g > \kappa$, γ

Coupling SC Qubits: Use a Circuit Element

Charge qubits: NEC 2003

an inductor

Flux qubits: Delft 2007

Phase qubits: UCSB 2006

tunable (SQUID) element

Flux qubits: Berkeley 2006, NEC 2007 Or tunable bus, Chalmers

transmon qubits

How do we entangle two qubits? $R_{Y}(-\pi/2)$ rotation on each qubit yields superposition: $|\Psi\rangle = \frac{1}{2}(|0\rangle + |1\rangle) \otimes (|0\rangle + |1\rangle)$ $= \frac{1}{2}(|00\rangle + |10\rangle + |01\rangle + |11\rangle)$

'Conditional Phase Gate' entangler:

$$\begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} |\Psi\rangle = \frac{1}{2} (|00\rangle + |10\rangle + |01\rangle - |11\rangle)$$

No longer a product state!

How do we entangle two qubits?

$$\begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} |\Psi\rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle - |11\rangle) = \frac{1}{\sqrt{2}} (|0 \rightarrow \rangle + |1 \leftarrow \rangle)$$

 $R_{Y}(+\pi/2)$ rotation on LEFT qubit yields:

$$\left| \text{Bell} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| \mathbf{00} \right\rangle + \left| \mathbf{11} \right\rangle \right)$$

Other 3 Bell states similarly achieved.

Entanglement on Demand

How do we realize the conditional phase gate?

$$\begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} |\Psi\rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle - |11\rangle)$$

Use control lines to push qubits near a resonance:

A controlled z-z interaction also à la NMR

Key is to use 3rd level of transmon (outside the logical subspace)

Coupling turned off.

Coupling turned on: Near resonance with 3rd level $\omega_{01} \approx \omega_{12}$

Energy is shifted if and only if both qubits are in excited state.

Adiabatic Conditional Phase Gate

Use large on-off ratio of ζ to implement 2-qubit phase gates.

$$\int \zeta(t) \, \mathrm{d}t = (2n+1)\pi$$

Strauch et al. PRL (2003): proposed use of excited states in phase qubits

Adjust timing so that amplitude for both qubits to be excited acquires a minus sign:

$$\begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} |\Psi\rangle = \frac{1}{2} (|00\rangle + |10\rangle + |01\rangle - |11\rangle)$$

Entanglement on Demand

Bell state	Fidelity	Concurrence
$ 00\rangle + 11\rangle$	91%	88%
$ 00\rangle - 11\rangle$	94%	94%
$ 01\rangle + 10\rangle$	90%	86%
$ 01\rangle - 10\rangle$	87%	81%

UCSB: Steffen *et al.*, Science (2006) ETH: Leek *et al.*, PRL (2009)

How do we read out the qubit state and measure the entanglement?

Two Qubit Joint Readout via Cavity

Two Qubit Joint Readout via Cavity

Initial polarization of qubit? > 99.7% (Bishop et al., 2009) -> reset fidelity is high!

Complex transmitted amplitude is non-linear in cavity pull:

$$t = \frac{\kappa/2}{\omega_{\rm drive} - \omega_{\rm cavity} - \Delta\omega + i\kappa/2}$$

Most general non-linear function of two Ising spin variables:

$$t = \beta_0 + \beta_1 \sigma_L^z + \beta_2 \sigma_R^z + \beta_{12} \sigma_L^z \otimes \sigma_R^z$$

Joint Readout $V_{\rm H} \sim \langle M \rangle = \beta_1 \langle \sigma_z^{\rm L} \rangle + \beta_2 \langle \sigma_z^{\rm R} \rangle + \beta_{12} \langle \sigma_z^{\rm L} \otimes \sigma_z^{\rm R} \rangle$ $\beta_1 \sim 1; \quad \beta_2 \sim 0.8; \quad \beta_{12} \sim 0.5$ 2.0 🔸 data fit 1.5 V, 1.0 0.5 2.0 data fit (> 1.5 ≝ 1.0 > 1.5 0.5 v 2.0 data model 1.5 1.0 0.5 0.3 0.0 0.1 0.2 0.4 Time (µs)

0

State Tomography

$$V_{\rm H} \sim \langle M \rangle = \beta_1 \langle \sigma_z^{\rm L} \rangle + \beta_2 \langle \sigma_z^{\rm R} \rangle + \beta_{12} \langle \sigma_z^{\rm L} \otimes \sigma_z^{\rm R} \rangle$$

Combine joint readout with one-qubit "analysis" rotations

$$\langle \sigma_z^{\rm L} \rangle \sim V_H(Ident.) + V_H(Y_{\pi}^{\rm R}) - \pi$$
-pulse on right

 $\langle \sigma_z^{\mathsf{R}} \rangle \sim V_H(Ident.) + V_H(\mathbf{Y}_{\pi}^L) \longleftarrow \pi$ -pulse on left

 $\langle \sigma_z^L \sigma_z^R \rangle \sim V_H(Ident.) + V_H(Y_\pi^R, Y_\pi^L) \longleftarrow \pi \text{ on both}$

Possible to acquire correlation information even with single, ensemble averaged msmt.!

Rotate qubits to map other correlations onto z-z. See similar from Zurich group: Fillip et al., PRL **102**, 200402 (2009).

Measuring the Two-Qubit State

Total of 16 msmts.: $I, Y_{\pi}^{L}, X_{\pi/2}^{L}, Y_{\pi/2}^{L}$ $I, Y_{\pi}^{R}, X_{\pi/2}^{R}, Y_{\pi/2}^{R}$

and combinations

Measuring the Two-Qubit State

Apply π -pulse to invert state of right qubit

One qubit excited: $|\psi\rangle = |01\rangle = |\uparrow\downarrow\rangle$

$$\left\langle \boldsymbol{\sigma}_{\mathrm{L}}^{z} \right\rangle = +1$$
$$\left\langle \boldsymbol{\sigma}_{\mathrm{R}}^{z} \right\rangle = \left\langle \boldsymbol{\sigma}_{\mathrm{L}}^{z} \boldsymbol{\sigma}_{\mathrm{R}}^{z} \right\rangle = -1$$

Measuring the Two-Qubit State Now apply a two-qubit gate to *entangle* the qubits

Entangled state: $|\psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)$

Clauser, Horne, Shimony & Holt (1969)

Witnessing Entanglement X' CHSH operator = entanglement witness CHSH = XX' - XZ' + ZX' + ZZ'

> If variables take on the values ±1 and exist even independent of measurement then

 $CHSH = \frac{X(X' - Z') + Z(X' + Z')}{\text{Either:}} = 0 = \pm 2$ $Or: = \pm 2 = 0$

Classically:

Witnessing Entanglementx'CHSH operator = entanglement witness $\langle CHSH \rangle = \langle XX' \rangle - \langle XZ' \rangle + \langle ZX' \rangle + \langle ZZ' \rangle$ $\longrightarrow x$ XX' - XZ' + ZX' + ZZ'XX' - XZ' + ZX' + ZZ'

Clauser, Horne, Shimony & Holt (1969)

Separable bound:

 $|CHSH| \leq 2$

not ? Bell's violation (loopholes abound)

but state is clearly highly entangled! (and no likelihood req.)

Control: Analyzing Product States

Using entanglement on demand to run first quantum algorithm on a solid state quantum processor

Skip to Summary

General Features of a Quantum Algorithm

- 1) Start in superposition: all values at once!
- 2) Build complex transformation out of one-qubit and two-qubit "gates"
- 3) Somehow* make the answer we want result in a definite state at end!

*use interference: the magic of the properly designed algorithm

$$f(x) = \begin{cases} -1, \ x \neq x_0 \\ 1, \ x = x_0 \end{cases}$$

"Find x₀!"

$$f(x) = \begin{cases} -1, \ x \neq x_0 \\ 1, \ x = x_0 \end{cases}$$

"Find x₀!"

$$f(x) = \begin{cases} -1, \ x \neq x_0 \\ 1, \ x = x_0 \end{cases}$$

"Find **x**₀!"

$$f(x) = \begin{cases} -1, \ x \neq x_0 \\ 1, \ x = x_0 \end{cases}$$

"Find x₀!"

Classically, takes on average 2.25 guesses to succeed...

Use QM to "peek" under all the cards, find queen on first try!

Grover's Algorithm

"unknown"
unitary
operation:
$$\rightarrow O |\psi\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} |\psi\rangle$$
 Finally

Challenge: Find the location of the -1 !!! (= queen)

Previously implemented in NMR: Chuang et al., 1998 Ion traps: Brickman et al., 2003

10 pulses w/ nanosecond resolution, total 104 ns duration

Grover Step-by-Step

 $|\psi_{\text{ideal}}\rangle = |00\rangle$

0

0

b

Grover Step-by-Step

Final 1-qubit rotations reveal the answer:

The binary representation of "2"!

The correct answer is found >80% of the time!

Grover with Other Oracles

Fidelity $F = \langle \psi_{\text{ideal}} | \rho | \psi_{\text{ideal}} \rangle$ to ideal output

(average over 10 repetitions)

Circuit QED Team Members

Funding:

DiCarlo et al.

DiCarlo et al., cond-mat 0903.2030, Nature in press

Additional Slides Follow

Multiplexed Qubit Control and Read-Out

Witnessing Entanglement

Measuring the Two-Qubit State

Now apply a two-qubit gate to entangle the qubits

Single shot readout fidelity

Measurement with ~ 5 photons in cavity; SNR ~ 4 in one qubit lifetime (T₁) T1 ~ 300 ns, low Q cavity on sapphire

Projective measurement

• Measurement after pi/2 pulse bimodal, halfway between

The cost of entanglement

- 1 Cryogenic HEMT amp
- 2 Room Temp Amps
- I Two-channel digitizer
- 1 Two-channel AWG
- 1 Four-channel AWG
- 2 Scalar signal generators
- 2 Vector signal generators
- 1 Low-frequency generator
- 1 Rubidium frequency standard
- 2 Yokogawa DC sources
- 1 DC power supply
- 1 Amp biasing servo
- 1 Computer
- 10³ Coffee pods

One-Qubit Gates

Apply microwave pulse resonant with qubit

Spectroscopy of Qubits Interacting with Cavity

Spectroscopy of Qubits Interacting with Cavity

Qubits mostly separated and non-interacting due to frequency difference

$$T_{1,r} = 0.79 \,\mu s$$

 $T_{2,r}^* = 1.15 \,\mu s$

$$T_{1,1} = 1.3 \,\mu s$$

 $T_{2,1}^* = 1.8 \,\mu s$

One-Qubit Gates

Two-Excitation Manifold of System

"Qubits" and cavity both have multiple levels...

On/Off Ratio for Two-Qubit Coupling

State Tomography

$$V_{\rm H} \sim \langle M \rangle = \beta_1 \langle \sigma_z^{\rm L} \rangle + \beta_2 \langle \sigma_z^{\rm R} \rangle + \beta_{12} \langle \sigma_z^{\rm L} \otimes \sigma_z^{\rm R} \rangle$$

Combine joint readout with one-qubit "analysis" rotations

$$\langle \sigma_z^{\rm L} \rangle \sim V_H(Ident.) + V_H(Y_{\pi}^{\rm R}) - \pi$$
-pulse on right

 $\langle \sigma_z^{R} \rangle \sim V_H(Ident.) + V_H(\mathbf{Y}_{\pi}^{L}) \longleftarrow \pi$ -pulse on left $\langle \sigma_z^{L} \sigma_z^{R} \rangle \sim V_H(Ident.) + V_H(\mathbf{Y}_{\pi}^{R}, \mathbf{Y}_{\pi}^{L}) \longleftarrow \pi$ on both

Possible to acquire correlation info., even with single, ensemble averaged msmt.!

See similar from Zurich group: Fillip et al., PRL **102**, 200402 (2009).

Measuring the Two-Qubit State

Apply π -pulse to invert state of right qubit

One qubit excited: $|\psi\rangle = |01\rangle$

SPECTROSCOPY OF A JOSEPHSON ATOM

Sufficient to control the artificial atom as a two level system: Qubit

Slide courtesy of J. Schreier and R. Schoelkopf