

Building a Quantum Limited Amplifier from Josephson Junctions and Resonators

Benjamin Huard Quantum Electronics group, LPA - Ecole Normale Supérieure de Paris, France

Nicolas Roch

Emmanuel Flurin

Philippe Campagne

Michel Devoret

Probing Quantum objects with microwave signals

Santa Barbara 2010 see Andrew's talk at 3pm

Boulder 2011

Example: measuring the state of a Qbit

[see Lecture V]

Why do we need good amplifiers ?

Why do we need good amplifiers ?

Goal: evolution of the quantum object directly given by the measurement outcome

Two kinds of linear amplifiers

[Yurke et al., PRA (1989), Bell Labs] [Castellanos-Beltran, Nat Phys. (2008), Boulder] [Yamamoto et al., APL (2008), RIKEN]...

[Caves, PRD (1982), Caltech HEMTs]

Two kinds of linear amplifiers

best commercial amplifiers

[Caves, PRD (1982), Caltech]

Core of the amplifier: 3-wave mixing

$$\hat{H}_{Mix} = \hbar g^{(3)} \left(a_S^{\dagger} a_I^{\dagger} a_P + a_S a_I a_P^{\dagger} \right)$$

[see Lecture III]

Basis of amplification stimulated emission

Implementation in optics: non-linear crystal

spontaneous parametric down-conversion

How to reach the quantum limit for microwaves ?

Cavities

Non linear element: Josephson junction

Non linear element: Josephson junction

Non linear element: Josephson junction

Josephson Parametric Converter (JPC)

spatial decomposition using a ring

 $U = \alpha XYZ + \mu (X^{2} + Y^{2} + Z^{2}) + O(\dots^{4})$

symmetry forbids undesired terms

magnetic flux provides current bias

 $\Phi \stackrel{\sim}{\Leftrightarrow} I_{\text{bias}}$

but phase slips possible !

[see Lecture III]

Josephson Parametric Converter (JPC)

[Bergeal et al., Nat. Phys. (2010)]

Josephson Parametric Converter (JPC)

[Bergeal et al., Nat. Phys. (2010), Lecture III]

Realization

Cabling of the dilution fridge

Resonance frequency as a function of field

Resonance frequency as a function of field

3-wave mixing with the Josephson ring

How to improve the JPC?

magnetic flux provides current bias

phase slips possible !

frequency tunability with the flux

can**not** be tuned if stability required

robustness of the amplifier

requires stability

How to improve the JPC?

ideally,

magnetic flux provides current bias

phase slips possible !

but phase slip because

$$L_J = \frac{\varphi_0}{I_0 \cos(\varphi_{\text{ext}}/4)}$$

goes negative when $\varphi_{\rm ext}/4 > \frac{\pi}{2}$

How to improve the JPC?

magnetic flux provides current bias

phase slips possible !

$$U \longmapsto U + \frac{E_L}{4} \left(2X^2 + 2Y^2 + Z^2 \right)$$

no phase slip if $L_J = \frac{\varphi_0}{I_0} > \frac{12}{5}L$

New generation

Resonance frequency as a function of field

Gain as a function of magnetic field

Varying the critical current

large I_0

Resonance frequency as a function of field

Noise calibration

$$P_n(\omega_{\rm s}) = \frac{Z_0 S_{II}(\omega_{\rm s})}{4} \Delta \omega$$

if $R_t = Z_0$ and $R_t C_t \omega_S \ll 1$ perfect matching

 $f_{\text{pump}} = 14.071 \text{ GHz}, P_{\text{pump}} = -3.56 \text{ dBm}, I_{\text{coil}} = 3 \ \mu A$

slope change at $eV^{TJ} = \hbar \omega_S$ even for $S_{tot}(\omega_I)$

 $f_{\text{pump}} = 14.071 \text{ GHz}, P_{\text{pump}} = -3.56 \text{ dBm}, I_{\text{coil}} = 3 \ \mu A$

YES, but need to determine the impedance matching of the junction

 $C_t \approx 0.5 - 1 \text{ pF}, R_t = 44 \ \Omega, Z_0 = 50 \ \Omega, \omega/2\pi = 8.6 \text{ GHz}$

 $f_{\text{pump}} = 14.071 \text{ GHz}, P_{\text{pump}} = -3.56 \text{ dBm}, I_{\text{coil}} = 3 \ \mu A$

fit $D = 0.30, T^{TJ} = 40 \text{ mK}$

fit $D = 0.31, T^{TJ} = 40 \text{ mK}$

Noise as a function of temperature

note: other junction and amplifier

Conclusions

Ring of 4 Josephson junctions in cavity realizes a non-degenerate parametric amplifier for microwave photons

> [Bergeal et al., Nat. Phys. (2010)] [Bergeal et al., Nature (2010)]

Proper calibration of attenuation between noise source and amp needed to prove **quantum limit** is reached

Bandwidth tunability and stability achieved using additional inductances

Thanks !

Thanks !

Nicolas Roch

Emmanuel Flurin

Philippe Campagne

Michel Devoret

Discussions

Devoret's group (Yale University, USA) Hybrid Quantum Circuits group (LPA-ENS) Mesoscopic physics group (LPA - ENS) Quantronics Group (CEA Saclay, France) Mazyar Mirrahimi (INRIA, Paris, France) Cristiano Ciuti (Paris 7, France) Theory group (LPA-ENS)

Nanofab support

Michael Rosticher *et al.* (ENS) Quantronics Group (CEA Saclay) Stephan Suffit (Paris 7) Dominique Mailly *et al.* (LPN) MAIRIE DE PARIS Roland Lefevre (Observatoire de Paris) Roger Gohier (INSP)

Technical support Pascal Morfin Jean-Charles Dumont David Darson

Former members Florent Baboux (2010) Lola El Sahmarany (2010) François Nguyen (2009)

CINIS

