Building a Quantum Limited Amplifier from Josephson Junctions and Resonators

Benjamin Huard
Quantum Electronics group,
LPA - Ecole Normale Supérieure de Paris, France

Nicolas Roch
Emmanuel Flurin
Philippe Campagne

Michel Devoret
Probing Quantum objects with microwave signals

Santa Barbara 2010
see Andrew's talk at 3pm

Boulder 2011

Saclay 2011

Yale 2010

Berkeley 2011
Example: measuring the state of a Qbit

$$|0\rangle$$
$$|1\rangle$$
$$\alpha |1\rangle + \beta |0\rangle$$

$$\alpha |1\rangle \otimes |\alpha_1\rangle + \beta |0\rangle \otimes |\alpha_0\rangle$$

$$I \cos(\omega_{cav} t) + Q \sin(\omega_{cav} t)$$

[see Lecture V]
Why do we need good amplifiers?

\[\alpha |1\rangle \otimes |\alpha_1\rangle + \beta |0\rangle \otimes |\alpha_0\rangle \]

\[I \cos(\omega_{cav} t) + Q \sin(\omega_{cav} t) \]

|0\rangle

|1\rangle

\[\alpha |1\rangle + \beta |0\rangle \]

not quantum limited
Why do we need good amplifiers?

Why do we need good amplifiers?

\[\alpha |1\rangle \otimes |\alpha_1\rangle + \beta |0\rangle \otimes |\alpha_0\rangle \]

\[I \cos(\omega_{\text{cav}} t) + Q \sin(\omega_{\text{cav}} t) \]

Goal: evolution of the quantum object directly given by the measurement outcome
Two kinds of linear amplifiers

phase preserving

\[\hat{a}_{\text{out}} = \sqrt{G} \hat{a}_{\text{in}} + \hat{N} \]

\[[\hat{a}_{\text{out}}, \hat{a}_{\text{out}}^\dagger] = 1 \Rightarrow [\hat{N}^\dagger, \hat{N}] = G - 1 \]

\[\Delta \hat{N}^2 = \frac{1}{2} \left\langle \left\{ \hat{N}, \hat{N}^\dagger \right\} \right\rangle \geq \frac{G - 1}{2} \]

[Caves, PRD (1982), Caltech HEMTs]

phase dependent

\[\hat{a}_{\text{out}} = \frac{\sqrt{G}}{2} (\hat{a}_{\text{in}} + \hat{a}_{\text{in}}^\dagger) + \frac{1}{2\sqrt{G}} (\hat{a}_{\text{in}} - \hat{a}_{\text{in}}^\dagger) \]

\[[\hat{a}_{\text{out}}, \hat{a}_{\text{out}}^\dagger] = 1 \]

\[\Delta \hat{N}^2 \geq 0 \]

[Yurke et al., PRA (1989), Bell Labs]
[Castellanos-Beltran, Nat Phys. (2008), Boulder]
[Yamamoto et al., APL (2008), RIKEN]...
Two kinds of linear amplifiers

phase preserving

\[\hat{a}_{\text{out}} = \sqrt{G} \hat{a}_{\text{in}} + \hat{N} \]

\[[\hat{a}_{\text{out}}, \hat{a}_{\text{out}}^\dagger] = 1 \Rightarrow [\hat{\mathcal{N}}^\dagger, \hat{\mathcal{N}}] = G - 1 \]

\[\Delta \hat{\mathcal{N}}^2 = \frac{1}{2} \left\langle \left\{ \hat{\mathcal{N}}, \hat{\mathcal{N}}^\dagger \right\} \right\rangle \geq \frac{G - 1}{2} \]

[\text{Caves, PRD (1982), Caltech}]
Core of the amplifier: 3-wave mixing

\[\hat{H}_{Mix} = \hbar g^{(3)} (a_S^\dagger a_I^\dagger a_P + a_S a_I a_P^\dagger) \]

[see Lecture III]

Basis of amplification
stimulated emission

\[\hat{H}_{Mix} |1_S, 0_I, \alpha_P\rangle = \alpha_P \hbar g^{(3)} |2_S, 1_I, \alpha_P\rangle \]
Implementation in optics: non-linear crystal

\[\hat{H}_{Mix} = \hbar g^{(3)} (a_S^\dagger a_I^\dagger a_P + a_S a_I a_P^\dagger) \]

\[\hat{H}_{Mix} |0_S, 0_I, \alpha_P\rangle = \alpha_P \hbar g |1_S, 1_I, \alpha_P\rangle \]

spontaneous parametric down-conversion
How to reach the quantum limit for microwaves?

\[\Delta \hat{N}^2 \approx \frac{G - 1}{2} \]

Need to minimize the number of information channels to 3

- **Superconducting circuits**: no dissipation
- **GHz signals**: no thermal photons at dilution fridge temperatures
- **Proper filtering**: no external electromagnetic noise
Cavities

3-wave mixing term needed

\[\hat{H}_{Mix} = \hbar g^{(3)} (a_S^\dagger a_I^\dagger a_P + a_S a_I a_P^\dagger) \]
Non linear element: Josephson junction

\[U = -\varphi_0 I_0 \cos(\varphi) \]
Non linear element: Josephson junction

\[U = -\varphi_0 I_0 \cos(\varphi) - I_{\text{bias}} \varphi_0 \varphi \]

5 µm
Non linear element: Josephson junction

\[U = -\varphi_0 I_0 \cos(\varphi) - I_{\text{bias}} \varphi_0 \varphi \]

\[-\varphi_0 I_0 \]

\[I_{\text{bias}} = 0.2 I_0 \]

\[\propto \varphi^3 \]

To get \(a_S^\dagger a_I^\dagger a_P \), we use \(\varphi \varphi \varphi \)

Need to decompose \(\varphi^3 \mapsto \varphi \varphi \varphi \)
Josephson Parametric Converter (JPC)

spatial decomposition using a ring

\[U = \alpha X Y Z + \mu (X^2 + Y^2 + Z^2) + O(\ldots^4) \]

symmetry forbids undesired terms

\[XY, X^3, XY^2 \]

magnetic flux provides current bias

\[\Phi \leftrightarrow I_{bias} \]

but phase slips possible!

[see Lecture III]
Josephson Parametric Converter (JPC)

\[H \approx \alpha X Y Z + \mu (X^2 + Y^2 + Z^2) \]

\[\omega_s \downarrow \]

\[\omega_i \downarrow \]

\[\Omega \uparrow \]

[Josephson et al., Nat. Phys. (2010)]
Josephson Parametric Converter (JPC)

\[G = \left(\frac{1 + \rho^2}{1 - \rho^2} \right)^2 \]

\[\rho = \frac{\sqrt{2} I_p}{4 I_0 \sqrt{P_s Q_s p_i Q_i}} \]

[Bergeal et al., Nat. Phys. (2010), Lecture III]
Realization

$I_0 \approx 5 \mu A$
Cabling of the dilution fridge
Resonance frequency as a function of field

35 mK

\[Q_{\text{coupl}} = 35 \] idler

Pump OFF

\[Q_{\text{coupl}} = 104 \] signal
Resonance frequency as a function of field X, Y, and Z.

$\text{arg}(r)(^\circ) = \frac{U}{\varphi_0 I_0}$

$\frac{X}{2\varphi_0} = \frac{Y}{2\varphi_0} = \frac{Z}{2\varphi_0}$

35 mK
3-wave mixing with the Josephson ring

\[
H \approx \alpha XYZ + \mu(X^2 + Y^2 + Z^2)
\]

\[
\Phi = 0
\]

best non-linearity
unstable

\[
\Phi = \Phi_0 / 2
\]

average non-linearity
stable
Gain as a function of pump power

\[\Phi = \Phi_0 / 2 \]

35 mK

idler

signal

\[\Delta f \approx 20 \text{ MHz for } G = 100 \]
How to improve the JPC?

- Magnetic flux provides current bias: $\Phi \sim I_{\text{bias}}$
- Phase slips possible!

- Frequency tunability with the flux cannot be tuned if stability required
- Robustness of the amplifier requires stability
How to improve the JPC?

Ideally, $\vec{B}_{\text{ext}} \circlearrowleft \varphi_{\text{ext}}$

$\Phi \Leftrightarrow I_{\text{bias}}$

Magnetic flux provides current bias.

Phase slips possible!

But phase slip because

$$L_J = \frac{\varphi_0}{I_0 \cos(\varphi_{\text{ext}}/4)}$$

goes negative when $\varphi_{\text{ext}}/4 > \frac{\pi}{2}$
How to improve the JPC?

- Magnetic flux provides current bias: $\Phi \Leftrightarrow I\text{bias}$
- Phase slips possible!

Solution: add inductances

$$U \rightarrow U + \frac{E_L}{4} \left(2X^2 + 2Y^2 + Z^2\right)$$

No phase slip if

$$L_J = \frac{\varphi_0}{I_0} > \frac{12}{5} L$$
New generation
Resonance frequency as a function of field

Pump OFF

\[Q_{\text{coupl}} = 132 \]
\[\text{idler} \]

\[Q_{\text{coupl}} = 220 \]
\[\text{signal} \]

No more hysteresis!
Gain as a function of magnetic field

maximal gain (dB)

35 mK

idler

signal

tunability!

\[
\frac{d\omega_s}{d\Phi} = \Phi_0 \frac{\omega_s^2 I_0 L}{2Z_0} \frac{L}{\varphi_0}
\]
Varying the critical current

small I_0

medium I_0

large I_0
Resonance frequency as a function of field

- $I_{\text{coil}}^{\text{meas}}$ (red circles)
- $I_{\text{coil}}^{\text{meas}}$ (black circles)

- Theory with $L = 0.06 - 0.07 \, \text{nH}$
- $L_{\text{series}} = 0.07 - 0.08 \, \text{nH}$
- Still OK with $\pm 20\%$

For $I_0 = 0.5 \, \mu\text{A}$:

For $I_0 = 1.2 \, \mu\text{A}$:

For $I_0 = 1.5 \, \mu\text{A}$:

Tunability with l_0
Gain as a function of pump power

35 mK

$f_{\text{pump}} = 14.071 \text{ GHz}, I_{\text{coil}} = 3 \mu \text{A}$

- Amplification
- Lasing

Gain as a function of pump power

P_{dBm} vs f_{GHz}

signal

signal gain (dB) vs f_{GHz}
Gain as a function of pump power

\[f_{\text{pump}} = 14.071 \text{ GHz}, \ I_{\text{coil}} = 3 \ \mu A \]
Gain as a function of pump power

35 mK

\[f_{pump} = 14.071 \text{ GHz}, \quad I_{\text{coil}} = 3 \mu A \]

![Graph showing gain as a function of pump power](image)
Normal metal tunnel junction: a good noise source
Noise measurement

\[\hbar \omega \gg k_B T \Rightarrow R_t S_{II}(V, \omega_S) = \text{Max}(2|eV|, 2\hbar \omega_S) \]

\[P_n(\omega_s) = \frac{Z_0 S_{II}(\omega_s)}{4} \Delta \omega \]

if \(R_t = Z_0 \) and \(R_t C_t \omega_S \ll 1 \)

perfect matching
Noise measurement

\[S_{\text{tot}} = G_{\text{tot}} \left(S^{50} \Omega (\omega_I) + \frac{\omega_I}{\omega_S} S^{TJ} (\omega_S) \right) \]

\[\hbar \omega_S, \hbar \omega_I \gg k_B T \]

\[S^{50} \Omega (\omega_I) = \frac{\hbar \omega_I}{2} \]

\[S^{TJ} (V, \omega_S) = \text{Max} \left(\frac{|eV|}{2}, \frac{\hbar \omega_S}{2} \right) \]
Noise measurement

\[f_{\text{pump}} = 14.071 \text{ GHz}, \quad P_{\text{pump}} = -3.56 \text{ dBm}, \quad I_{\text{coil}} = 3 \mu \text{A} \]

slope change at \(eV_{\text{TJ}} = \hbar \omega_S \) even for \(S_{\text{tot}}(\omega_I) \)
Noise measurement

\[f_{\text{pump}} = 14.071 \text{ GHz}, \ P_{\text{pump}} = -3.56 \text{ dBm}, \ I_{\text{coil}} = 3 \mu A \]

Can we use it to calibrate the added noise?

YES, but need to determine the impedance matching of the junction.
Noise measurement

\[S_{tot} = G_{tot}(S^{50 \, \Omega}) + D \frac{\omega_I}{\omega_S} STJ(\omega_S) + (1 - D) \frac{\omega_I}{\omega_S} S^{50 \, \Omega} \]

\[S^{50 \, \Omega}(\omega_I) = \frac{\hbar \omega_I}{2} \]

\[D = \frac{4R_t \text{Re}[Z_{env}(\omega_S)]}{|R_t + Z_{env}(\omega_S)|^2} \approx 0.38 - 0.71 \]

\[x \text{ insertion loss} \]

\[D \approx 0.2 - 0.71 \]

\[C_t \approx 0.5 - 1 \, \text{pF}, \quad R_t = 44 \, \Omega, \quad Z_0 = 50 \, \Omega, \quad \omega/2\pi = 8.6 \, \text{GHz} \]
\(f_{\text{pump}} = 14.071 \text{ GHz}, P_{\text{pump}} = -3.56 \text{ dBm}, I_{\text{coil}} = 3 \mu A \)

Noise measurement

\[
\frac{S_{\text{tot}}(\omega_S)}{\hbar\omega_S} \quad \frac{eV^{TJ}_S}{\hbar\omega_S} \\
\frac{S_{\text{tot}}(\omega_I)}{\hbar\omega_I} \quad \frac{eV^{TJ}_I}{\hbar\omega_I}
\]

fit \(D = 0.30, T^{TJ} = 40 \text{ mK} \)
Noise as a function of temperature

\[R_t S_{II}(\omega) = (eV + \hbar \omega) \coth \left(\frac{eV + \hbar \omega}{2k_BT} \right) + (eV - \hbar \omega) \coth \left(\frac{eV - \hbar \omega}{2k_BT} \right) \]

40mK → 200mK

\[\frac{S(\omega)}{\hbar \omega} \]

\[V_{TJ}(\mu V) \]

note: other junction and amplifier
Conclusions

Ring of 4 Josephson junctions in cavity realizes a non-degenerate parametric amplifier for microwave photons

[Ring of 4 Josephson junctions in cavity diagram]

[Bergeal et al., Nat. Phys. (2010)]
[Bergeal et al., Nature (2010)]

Proper calibration of attenuation between noise source and amp needed to prove quantum limit is reached

Bandwidth tunability and stability achieved using additional inductances
Thanks !
Thanks!

Technical support
- Pascal Morfin
- Jean-Charles Dumont
- David Darson

Former members
- Florent Baboux (2010)
- Lola El Sahmarany (2010)
- François Nguyen (2009)

Discussions
- Devoret’s group (Yale University, USA)
- Hybrid Quantum Circuits group (LPA-ENS)
- Mesoscopic physics group (LPA-ENS)
- Quantronics Group (CEA Saclay, France)
- Mazyar Mirrahimi (INRIA, Paris, France)
- Cristiano Ciuti (Paris 7, France)
- Theory group (LPA-ENS)
 ...

Nanofab support
- Michael Rosticher et al. (ENS)
- Quantronics Group (CEA Saclay)
- Stephan Suffit (Paris 7)
- Dominique Mailly et al. (LPN)
- Roland Lefevre (Observatoire de Paris)
- Roger Gohier (INSP)