

Chaire de Physique Mésoscopique Michel Devoret Année 2011, 10 mai - 21 juin

AMPLIFICATION ET RETROACTION QUANTIQUES

QUANTUM AMPLIFICATION AND FEEDBACK

Quatrième Leçon / Fourth Lecture

Transparents des leçons disponibles à http://www.physinfo.fr/lectures.html

11-IV-1

PROGRAM OF THIS YEAR'S LECTURES
Lecture I: Introduction to quantum-limited amplification and feedback
Lecture II: How do we model open, out-of-equilibrium, non- linear quantum systems?
Lecture III: Can we maintain the noise at the quantum limit while increasing gain, bandwidth and dyn ^{amic} range?
Lecture IV: What are the minimal requirements for an active circuit to be fully directional and noiseless?
Lecture V: Can continuous quantum measurements be viewed as a form of Brownian motion?
Lecture VI: How can we maintain a dynamic quantum state alive?
11 1/ 2

CALENDAR OF SEMINARS
May 10: Fabien Portier, SPEC-CEA Saclay The Bright Side of Coulomb Blockade
May 17, 2011: Jan van Ruitenbeek (Leiden University, The Netherlands) Quantum Transport in Single-molecule Systems
May 31, 2011: Irfan Siddiqi (UC Berkeley, USA) Quantum Jumps of a Superconducting Artificial Atom
June 7, 2011: David DiVicenzo (IQI Aachen, Germany) Quantum Error Correction and the Future of Solid State Qubits
June 14, 2011: Andrew Cleland (UC Santa Barbara, USA) Images of Quantum Light
June 21, 2011: Benjamin Huard (LPA - ENS Paris) Building a Quantum Limited Amplifier from Josephson Junctions and Resonators
June 21, 2011 (3pm): Andrew Cleland (UC Santa Barbara, USA) How to Be in Two Places at the Same Time ?
11-IV-3

LECTURE IV : SYMMETRY PROPERTIES OF QUANTUM-LIMITED AMPLIFIERS

OUTLINE

- 1. Fundamental symmetries of scattering by active circuits
- 2. Passive non-reciprocity by Faraday rotation
- 3. Proof-of-principle of active, noiseless non-reciprocity
- 4. Amplifiers versus photomultipliers

11-IV-4

$$\begin{split} \textbf{DEGENERATE PARAMETRIC AMPLIFIER} \\ \begin{bmatrix} a^{out} [+\omega_{s}] \\ a^{out} [-\omega_{s}] \\ a^{out} [+\omega_{l}] \\ a^{out} [-\omega_{l}] \end{bmatrix} = \begin{bmatrix} e^{i\delta}\sqrt{G} & 0 & 0 & e^{i\delta}e^{i\beta}\sqrt{G-1} \\ 0 & e^{-i\delta}\sqrt{G} & e^{-i\delta}e^{-i\beta}\sqrt{G-1} & 0 \\ 0 & e^{-i\delta}e^{i\beta}\sqrt{G-1} & e^{-i\delta}\sqrt{G} & 0 \\ e^{i\delta}\sqrt{G} = \frac{1+\theta^{2}+\rho^{2}}{(1-i\theta)^{2}-\rho^{2}} & e^{i\delta}e^{i\beta}\sqrt{G-1} = \frac{-2i\rho}{(1-i\theta)^{2}-\rho^{2}} & \rho = \frac{g^{(3)}\sqrt{\overline{n_{c}}}e^{-i\theta}}{\Gamma_{a}} < 1 \\ \theta = \frac{\omega_{s}-\omega_{a}}{\Gamma_{a}} \\ \text{For mode whose spectral width is that of single pole of circuit:} \\ U(G)|vac\rangle = \frac{1}{\sqrt{G}}\sum_{n}\frac{\sqrt{(2n)!}}{2^{n}n!} \left(e^{i\phi}\sqrt{\frac{G-1}{G}}\right)^{n}|2n\rangle_{a} & \text{Contains only an even number of photons!} \\ X_{\parallel}^{out} = e^{-\lambda}X_{\perp}^{in} & \cosh\lambda = \sqrt{G} \\ X_{\perp}^{out} = e^{-\lambda}X_{\perp}^{in} & X_{\parallel} + iX_{\perp} \sim \int d\omega \frac{ia[\omega]}{1-i\theta} \\ \end{array}$$

