PROGRAM OF THIS YEAR'S LECTURES

Lecture I: Introduction to quantum-limited amplification and feedback

Lecture II: How do we model open, out-of-equilibrium, non-linear quantum systems?

Lecture III: Can we maintain the noise at the quantum limit while increasing gain, bandwidth and dynamic range?

Lecture IV: What are the minimal requirements for an active circuit to be fully directional and noiseless?

Lecture V: Can a continuous quantum measurement be viewed as a form of Brownian motion?

Lecture VI: How can we maintain a dynamic quantum state alive?
CALENDAR OF SEMINARS

May 10: Fabien Portier, SPEC-CEA Saclay
The Bright Side of Coulomb Blockade

May 17, 2011: Jan van Ruitenbeek (Leiden University, The Netherlands)
Quantum Transport in Single-molecule Systems

May 31, 2011: Irfan Siddiqi (UC Berkeley, USA)
Quantum Jumps of a Superconducting Artificial Atom

June 7, 2011: David DiVicenzo (IQI Aachen, Germany)
Quantum Error Correction and the Future of Solid State Qubits

June 14, 2011: Andrew Cleland (UC Santa Barbara, USA)
Images of Quantum Light

June 21, 2011: Benjamin Huard (LPA - ENS Paris)
Building a Quantum Limited Amplifier from Josephson Junctions and Resonators

June 21, 2011 (3pm): Andrew Cleland (UC Santa Barbara, USA)
How to Be in Two Places at the Same Time?

LECTURE V : AMPLIFIERS AND MEASUREMENTS

OUTLINE

1. Ensemble measurements versus continuous measurement of a single system

2. Monitoring of the Z component of a qubit by a quantum-limited amplifier

3. Monitoring of the charge of a LC oscillator by a quantum-limited amplifier

4. Quantum stochastic equation for density matrix of qubit under measurement
"TRADITIONAL" QUANTUM MEASUREMENT

Ensemble of N quantum systems

$H_{\text{sys}} = \mu \tilde{B} \sum_{i=1}^{N} \tilde{S}_i$

$H_{\text{sys-env}} = \mu \tilde{B} \sum_{i=1}^{N} \tilde{S}_i$

Density matrix:

$\rho(t) = \frac{1}{N} \sum_{i=1}^{N} \langle \psi_i(t) | \psi_i(t) \rangle$

Evolution:

$\dot{\rho} = -\frac{i}{\hbar} [H_{\text{sys}}, \rho] + \mathcal{L}_{\text{env}} \rho$

Measurement accesses:

$\langle S_{ij}(t) \rangle = \text{Tr} \left[S_{ij} \rho(t) \right]$

Noise of measurement apparatus and its back-action on the quantum system can be neglected as long as the coupling between them is very weak and N is very large.

"MODERN" QUANTUM MEASUREMENT

single quantum system

quantum meter (auxiliary d.o.f.)

quantum-limited amplifier measures quantum meter

classical amplifier

A/D Conv

D/A Conv

Dreements: classical, deterministic fields

: quantum variables coupling

: classical variables coupling

Notes:

1) quantum meter is interface between quantum system and measurement
2) environment of quantum system can eventually be limited to meter and amplifier

Operators can be treated classically when: $\langle [A,B] \rangle \ll \langle A \rangle \langle B \rangle$

Example: $\langle [a a', a] \rangle \ll \langle a \rangle \langle a' \rangle$

when $\pi \approx \langle a a' \rangle \gg 1$
Consider temporal modes with frequency spread much smaller than bandwidth of amplifier.

Courty et al. (1999)

\[
\begin{align*}
S &= \begin{bmatrix} 0 & 0 \\ \sqrt{G} & 0 \end{bmatrix} \\
& \quad \text{for quantum limit when:} \\
& \quad kT_{\text{load}} \ll \hbar \omega_{\text{osc}}
\end{align*}
\]

\[
\begin{align*}
v^\text{out} &= \sqrt{G} u^\text{in} + \sqrt{G-1} e^\text{in} \\
u^\text{out} &= w^\text{in}
\end{align*}
\]

Amp. reaches quantum limit when:

\[
k T_{\text{load}} \ll \hbar \omega_{\text{osc}}
\]

IT IS POSSIBLE IN THIS SETUP TO CONTROL PRECISELY THE QUANTUM PROCESS THAT WE CALL MEASUREMENT.

Situation similar, but not identical, to that in Rydberg atom experiments. (see Haroche and Raimond, "Exploring the Quantum")

Here atoms are fixed, and microwave photons are detected.
LECTURE IV: AMPLIFIERS AND MEASUREMENTS

OUTLINE

1. Ensemble measurements versus continuous measurement of a single system

2. Monitoring of the Z component of a qubit by a quantum-limited amplifier

3. Monitoring of the charge of a LC oscillator by a quantum-limited amplifier

4. Quantum stochastic equation for density matrix of qubit under measurement

DISPERENSIVE CQED QUBIT MEASUREMENT

\[H = \omega_{eg} \sigma^+ \sigma^- + \chi \sigma^z a_0 a_0 + \omega, a_0 a_0 \]

phase shift of reflected readout signal

width determined by resonator \(Q = \frac{\omega}{\kappa} \)

\[\theta_{eg} = 2 \tan^{-1} \frac{\chi}{\kappa} \]

transmon cavity pull:

\[\chi \approx \frac{2E_c g^2}{\Delta^2} \]

ADC

\(f_r = \omega/2\pi \)
POWERING THE RESONATOR

- qbit
- resonator
- \(|g\rangle \) or \(|e\rangle \)
- or \(\frac{|g\rangle + |e\rangle}{\sqrt{2}} \)
- quadrature (\(\text{Im} \alpha \))
- in-phase (\(\text{Re} \alpha \))

THE METER
- = a bunch of flying photons
- \(~400\text{ns} \gg T_m \gg \kappa^{-1} \gg \sim 20\text{ns} \)
- \(T_m \ll T_1 \ll \sim 10\mu\text{s} \)
- \(f_e \sim 8\text{GHz} > f_{eg} \)
- \(\bar{n}_m = |\alpha|^2 \sim 20 \)

RECEIVING SIGNAL FROM RESONATOR

- qbit
- resonator
- \(|g\rangle \) or \(|e\rangle \) or \(\frac{|g\rangle + |e\rangle}{\sqrt{2}} \)
- quadrature (\(\theta_{eg} \))
- in-phase

Entanglement between qubit and resonator preserved as long as qubit or resonator is not dephased or relaxed.
AMPLIFYING SIGNAL FROM RESONATOR

- Entanglement between qubit and resonator is now killed by throwing out the idler port photons!
- Boundary between quantum and classical part of apparatus is amplifier (when gain and signal are large)

PROCESSING SIGNAL FROM RESONATOR

- $A_g \sim \sqrt{\pi} \sin \frac{\theta_g}{2}$
- $A_e \sim \sqrt{\frac{1}{2} A^2 + \frac{1}{2}}$
OUTPUT SIGNAL MODE IN I-Q PLANE

\[Q = \frac{V^{\text{in}} - V^{\text{in}\dagger}}{2i} \]

\[I = \frac{V^{\text{in}} + V^{\text{in}\dagger}}{2} \]

\[r = \{I = kQ = I\} \]

Caution: \(I \) and \(Q \) are not current and charge!

Obtained in practice by heterodyning, rather than homodyning, output signal, and integrating the signal components.

EXAMPLE OF DATA TAKEN WITH JOSEPHSON PARAMP

\[I = \int ds \cos \delta t \]

\[Q = \int ds \sin \delta t \]

\[F = 0.32 \]

M. Hatridge (2011)
SIGNAL TO NOISE RATIO OF MEASUREMENT

Gambetta et al. (2008)

\[\frac{S}{N} = \eta \frac{T_m}{\chi^2} \frac{4 \chi^2}{\kappa^2 + \kappa^2} \bar{n}_r \]

Efficiency of measurement determined by amplifier

Number of cavity lifetimes

Information per cavity lifetime

The full discrete measurement with duration \(T_m \) can be thought of as the unfolding of a continuous measurement acquiring information at the effective rate:

\[\gamma_m = \kappa \bar{n}_r \frac{4 \chi^2}{\chi^2 + \kappa^2} \]

"measurement rate"

GENERALIZED MEASUREMENT OPERATOR

Two different Hilbert spaces: system and meter. Meter space is larger than system's.

Initial state of system and meter

\[|\Psi(t)\rangle = |\alpha(t)\rangle |\psi(t)\rangle \]

Co-evolution of system and meter

\[|\Psi(t + \Delta t)\rangle = U(\Delta t) |\alpha(t)\rangle |\psi(t)\rangle \]

Entanglement!
GENERALIZED MEASUREMENT OPERATOR

Two different Hilbert spaces: system and meter. Meter space is larger than system's.

Initial state of system and meter
\[|\Psi(t)\rangle = |\alpha(t)\rangle |\psi(t)\rangle \]

Co-evolution of system and meter
\[|\Psi(t + \Delta t)\rangle = U(\Delta t) |\alpha(t)\rangle |\psi(t)\rangle \]

Operator \(R \) of meter
\[R |r\rangle = |r\rangle \quad \text{(Pixel in I-Q space)} \]

Projective measurement of meter only, using \(R \), and yielding result \(r \)
\[|\Psi_r(t + \Delta t)\rangle = \frac{|r\rangle \langle r| U(\Delta t) |\alpha(t)\rangle |\psi(t)\rangle}{\sqrt{\text{Pr}(R = r)}} \]

Define \(M_r \), operator in system Hilbert space
\[M_r = \langle r| U(\Delta t) |\alpha(t)\rangle \]

Result probability (probability pixel \(r \) lights up)
\[\text{Pr}(R = r) = \langle \psi(t)| M_r^\dagger M_r |\psi(t)\rangle \]

Probability operator \(E_r = M_r^\dagger M_r \) is a generalization of projector \(\text{(Set } E_r \text{ is named POVM) } \)

LECTURE IV: AMPLIFIERS AND MEASUREMENTS

OUTLINE

1. Ensemble measurements versus continuous measurement of a single system
2. Monitoring of the Z component of a qubit by a quantum-limited amplifier
3. Monitoring of the charge of a LC oscillator by a quantum-limited amplifier
4. Quantum stochastic equation for density matrix of qubit under measurement
MONITORING AN OSCILLATOR INSTEAD OF A QUBIT

For the qubit measurement, the content of the resonator is "eaten" by the amplifier. What if our system was the resonator? Could we monitor it directly with the amplifier?

\[V_N = \sqrt{\frac{\hbar \omega Z_s}{2G}} (v^{\text{in}} + v^{\text{out}}) \]
\[I_N = \sqrt{\frac{\hbar \omega}{2Z_s}} (u^{\text{in}} - u^{\text{out}}) \]

when input shortened

\[v^{\text{in}} = \sqrt{G} u^{\text{in}} + \sqrt{G-1} e^{i\nu t} \]
\[u^{\text{out}} = w^{in} \]

Clerk et al., RMP (2010)

One too many sources of noise...!

The only way for the measurement to be minimally noisy appears to imply \(Z_s = Z_a \) which corresponds to matching the resonator to the amplifier and thus critical damping!

A solution exists to repair this problem....

AMPLIFIER WITH PASSIVE FEEDBACK

Can reach minimal noise in the weak coupling limit, no wasted information.
LECTURE IV: AMPLIFIERS AND MEASUREMENTS

OUTLINE

1. Ensemble measurements versus continuous measurement of a single system
2. Monitoring of the Z component of a qubit by a quantum-limited amplifier
3. Monitoring of the charge of a LC oscillator by a quantum-limited amplifier
4. Quantum stochastic equation for density matrix of qubit under measurement

MASTER EQUATION OF QUBIT UNDER MEASUREMENT

Hamiltonian of qubit coupled to cavity resonator:

\[\frac{H}{\hbar} = \omega_{eg} \sigma^z \sigma^- + \chi \sigma^+ \sigma^- a^+ a + \omega_a a^+ a \]

Coupling of resonator to amplifier:

\[\sqrt{\kappa} a = u^{\text{out}} - u^{\text{in}} \]

Master equation in the Markov approximation for a general system:

\[\dot{\rho}_{\text{tot}} = -\frac{i}{\hbar} [H, \rho_{\text{tot}}] + \sum_i D(A_i) \rho_{\text{tot}} \]

\[D(A) \rho = A \rho A^\dagger - A^\dagger A \rho / 2 - \rho A^\dagger A / 2 \]

Master equation in the Markov approximation for qubit alone:

\[\dot{\rho} = i \omega_{eg} [\sigma^z \sigma^-, \rho] + \gamma_\chi D(\sigma^-) \rho + \frac{1}{2} \left[\gamma_{\phi} + \gamma_m \right] D(\sigma_z) \rho \]

\[\gamma_{\phi} \text{ dephasing} + \frac{\gamma_m}{2} \text{ additional dephasing from measurement} \]

\[i = \text{decay channel} \]
We can thus infer Z_r from a stochastic differential equation giving the evolution of the density matrix. The random "force" is position-dependent, unlike in the usual Langevin equation.

ITO AND STRATONOVITCH STOCHASTIC EQUATION FORMALISMS

Stratonovitch
\[
\int_{t_0}^{T} g(t) dB(t) = \lim_{N \to \infty} \sum_{i=1}^{N} \left[g(t_{i+1}) + g(t_i) \right] \frac{B(t_{i+1}) - B(t_i)}{2}
\]
Acausal

Ito
\[
\int_{t_0}^{T} g(t) dB(t) = \lim_{N \to \infty} \sum_{i=1}^{N} g(t_i) \left[B(t_{i+1}) - B(t_i) \right]
\]
Causal

Ito rules of differentiation:
\[
d \left(A \cdot B \right) = A \cdot dB + dA \cdot B + dA \cdot dB
\]
extra term which can contain parts of same order as first 2
QUANTUM STOCHASTIC EQUATION FOR THE DENSITY MATRIX CONDITIONED BY MEASUREMENT RESULT

Neglecting relaxation and dephasing processes, the 3 components of the Bloch vector obey:

\[
\begin{align*}
 dX_r &= -\frac{\gamma_m}{2} X_r dt - \sqrt{\eta \gamma_m} X_r Z_r dW \\
 dY_r &= -\frac{\gamma_m}{2} Y_r dt - \sqrt{\eta \gamma_m} Y_r Z_r dW \\
 dZ_r &= \sqrt{\eta \gamma_m} (1 - |Z_r|^2) dW
\end{align*}
\]

Non-linear Brownian motion equations for the information on qubit!

(Ito formalism)

The evolution is of the form:

\[
\begin{align*}
 d\vec{S} &= -\vec{H} \times \vec{S} + \frac{1}{2} d\vec{M} \times (d\vec{M} \times \vec{S}) + \eta \left[d\vec{M} - \vec{S} \cdot (\vec{S} \cdot d\vec{M}) \right]
\end{align*}
\]

dissipation - fluctuation

They are equivalent to the Schrödinger equation + projection postulate.

If \(\eta = 1 \), \[E \left[d\left(\vec{S}^2\right) \right] = 0 \]: length of Bloch vector is conserved!

with: \(d\vec{M} = \sqrt{\gamma_m} d\vec{W} \)

END OF LECTURE