
RÉSONATEURS NANOMÉCANIQUES
DANS LE RÉGIME QUANTIQUE

NANOMECHANICAL RESONATORS
IN QUANTUM REGIME

Chaire de Physique Mésoscopique
Michel Devoret

Année 2012, 15 mai - 19 juin

Deuxième leçon / Second lecture

12-II-1

This College de France document is for consultation only. Reproduction rights are reserved.

Last update: 120525



PROGRAM OF THIS YEAR'S LECTURES

Lecture I: Introduction to nanomechanical systems

Lecture II: How do we model the coupling between electro-
magnetic modes and mechanical motion?

Lecture III: Is zero-point motion of the detector variables a limita-
tion in the measurement of the position of a mechanical
oscillator?

Lecture IV: In the active cooling of a nanomechanical resonator,
is measurement-based feedback inferior to autono-
mous feedback? 

Lecture V:  How close to the ground state can we bring a nano-
resonator?

Lecture VI: What oscillator characteristics must we choose to con-
vert quantum information from the microwave domain to
the optical domain?   12-II-2



May 15: Rob Schoelkopf (Yale University, USA)
Quantum optics and quantum computation with superconducting circuits.

May 22: Konrad Lehnert (JILA, Boulder, USA)
Micro-electromechanics: a new quantum technology.

May 29: Olivier Arcizet (Institut Néel, Grenoble)
A single NV defect coupled to a nanomechanical oscillator: hybrid nanomechanics.

June 5: Ivan Favero (MPQ, Université Paris Diderot)
From micro to nano-optomechanical systems: photons interacting
with mechanical resonators.

June 12: A. Douglas Stone (Yale University, USA)
Lasers and anti-lasers: a mesoscopic physicist’s perspective on scattering
from active and passive media.

June 19: Tobias J. Kippenberg (EPFL, Lausanne, Suisse)
Cavity optomechanics: exploring the coupling of light and micro- and
nanomechanical oscillators.

CALENDAR OF 2012 SEMINARS
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LECTURE II : INTERACTION BETWEEN LIGHT AND
MOVING MIRROR IN THE QUANTUM  REGIME

OUTLINE

1. A simple hamiltonian, whose parameters span many orders of 
magnitude

2. Radiation pressure and the Doppler effect in a 1D deformable
cavity: a fundamentally non-linear effect

3. Full coupling hamiltonian between radiation and moving mirror

4. Adiabatic approximation
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QUANTUM ELECTRO/OPTO-MECHANICS IS
GOVERNED BY A SIMPLE HAMILTONIAN
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courtesy of K. Lenhert

QUANTUM ELECTROMECHANICS

T~40mK
(800MHz)
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Teufel et al., Nature 471, 208 (2011)

JILA/NIST



γ

eω
mω

QUANTUM OPTOMECHANICS (1)

T=0.6K
(12GHz)

Verhagen, Deleglise, Weis, Schliesser and Kippenberg, Nature 482, 66 (2012)

EPFL
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QUANTUM OPTOMECHANICS(2)

T~20K
(400GHz)

Chan et al., Nature 478, 90 (2011)

CALTECH, U. VIENNA
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ORDERS OF MAGNITUDE
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THE CONNECTION BETWEEN RADIATION PRESSURE AND
THE DOPPLER EFFECT CAN BE EXPLORED USING A

SIMPLE MODEL, WHICH WILL ANSWER THESE QUESTIONS.

Reference: C. K. Law, Phys. Rev. A 51, 2537 (1995)

HOW IS THE HAMILTONIAN ABOVE, ALLOWING TO MEASURE fm 
DISPLACEMENTS, CONNECTED TO THE ONE RESPONSIBLE FOR THE

DOPPLER MEASUREMENT OF VELOCITY  AND THE ATTRACTION
BETWEEN TWO PLATES SUBMITTED TO AN AC VOLTAGE?
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WHAT APPROXIMATIONS ARE MADE IN THIS SIMPLE HAMILTONIAN?



AN ELEMENTARY, DEFORMABLE 1D RESONATOR

fixed end wall
(fixed mirror)

movable end wall
(movable mirror)

parallel strip
transmission line

(want fields uniform in y and z)

x0

X(t)

v(t) = X(t)
.

y

z

ℓ ℓ0

( ),E x t

electric field vanishes at mirror
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x0

X(t)

ℓ ℓ0

( ),B x t

A SIMPLE, DEFORMABLE 1D RESONATOR (CNT'D)

Magnetic field is maximum at mirrors

Treat vector potential in radiation gauge (a.k.a. Coulomb or transverse gauge)

The mirrors are perfectly conducting and inside the cavity, no sources are present.
Thus:

( ) ( ), ˆ
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The vector potential obeys: ( )
2 2
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speed of light

v(t) = X(t)
.
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ENERGY INSIDE RESONATOR

Instantaneous energy density inside resonator:
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Crucial details are that ℓ is an implicit function of time through the dynamics of X 

Instantaneous total energy inside resonator:

and that at all times ( )( ) ( ), 0, 0A At t t= =

mirror area

12-II-13



RADIATION PRESSURE
Pressure = derivative of energy inside an enclosure with respect to volume of enclosure

( )

( )

( )
( )

( )
( )

0

2

0
, 0

2

, 00

0

0

,

,

1 ,
2

1 ,
2

A

A

x
t

x
t

p x t dx

t

x t
x

x

A

B t

μ

μ

= =

==

=

=

∂ ∂⎡ ⎤= = ⎢ ⎥∂ ∂⎣ ⎦
=

∂⎡ ⎤= ⎢ ⎥∂⎣ ⎦

= ⎡ ⎤⎣ ⎦

∫
U

E
V�

E

Thus, pressure on mirror is:

Only space derivative
contributes. 
Time derivative of A
always zero at mirror.

This remains correct even if ℓ varies with time. 

Pressure is given by square
of magnetic field at mirror.

Coupling  between a macroscopic scatterer and light is fundamentally non-linear.
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PHOTON APPROACH TO RADIATION PRESSURE

Photons each 
have energy E
momentum E/c

Momentum transfer to mirror: 2E/c per photon
(when perfect back-scattering)

Pressure: momentum transfer per unit area per unit time

Radiation pressure: 2 ×incoming energy flux / c

0
2 2

0 0

2 2

2
2

in in in

in mirror

S E B
p

c c

B B

μ

μ μ

×
= =

= = Confirms wave approach!

Photons bounce on mirror

Poynting vector

TEM mode in cavity
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NORMAL MODES OF A CAVITY
WHOSE SHAPE DEPENDS ON TIME

x0 ℓ(t)

( ),k x tW
( ),k x t′W

ℓ(t')

k=3

( ) ( ) ( )
2 i, s nk x t kx
t t

π
=��W

Both wavelength and amplitude
are time dependent. 
Symbol k :  integer. 

( ) ( )( )
, '0 ', ,

t

k kk kx t x t δ=∫ �� ��W W Orthonormality condition is
independent of time.

(scheme is not relativistic, 
OK here)

Mode 
frequency: ( ) ( )k

ckt
t

πω =⎡ ⎤⎣ ⎦ Also varies with time!
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GENERALIZED NORMAL COORDINATES
OF FIELD INSIDE CAVITY

( ) ( ) ( )( )

0
, ,

t

k kq t A x t x t dx= ∫ WNormal coordinates

Countable infinity of degrees of freedom.

In turn, the field can be expressed in terms of normal coordinates:
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1

, ,k k
k

A x t q t x t
∞

=

=∑ W Completeness
of mode functions

[ ] [ ] [ ]1/ 2q = Φ ⋅Dimensional analysis:

flux
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CLASSICAL EQUATIONS OF MOTION FOR FIELD
NORMAL COORDINATES AND MIRROR POSITION
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radiation pressure force

Newton's Law for mirror:

mechal

force

coupled
equations:

light presses on mirror,
mirror pumps energy 
into or out of light.
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DOPPLER EFFECT

v = constant
fixed mirror far away

wave packet, velocity c

v c

& frequency

frequency is now 

After reflection:

f

21 vf
c

⎛ ⎞+⎜ ⎟
⎝ ⎠

energy in pulse has increased by same ratio

12-II-19



DOPPLER EFFECT FROM PHOTON POINT OF VIEW
Process is so far completely classical but can be interpreted in particle language:

Particle bouncing elastically on a moving heavy wall sees its momentum P increased
by 2mv, where m is particle mass and v the wall velocity. Relative increase in P is thus 
(1+ 2v/V), where V is the velocity of the particle. We can apply this idea to the photon:

v = constant

v cP mV=

before collision with mirror

21 vP mV
V

⎛ ⎞′ = +⎜ ⎟
⎝ ⎠

after collision with mirror

21 vP P
c c c
ω ω ⎛ ⎞′= → = +⎜ ⎟

⎝ ⎠
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FULL HAMILTONIAN OF CAVITY WITH MOVING
MIRROR IN THE NON-RELATIVISTIC APPROXTION
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Motion is non-relativistic and bounded by condition :  ℓ > 0.

Casimir
interaction
(1-D)

From the classical equations, it is possible to construct a Lagrangian. One obtains
the conjugate momenta and the quantum Hamiltonian by imposing standard com-
mutation relation between coordinates and momenta.

where

and

Hamiltonian contains Doppler shift, radiation pressure and Casimir effect.
First term resembles usual gauge coupling of charged particle. But here, mirror is neutral. 
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TWO APPROXIMATIONS
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radiation pressure
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Very well obeyed for nanoresonators in quantum regime!

Then, after a gauge transformation: ( )†
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Harmonic restoring force for mirror: ( )
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QED!

For a strictly 1D resonator,
it corresponds to period of
mirror motion much slower
than roundtrip of photon.

If 
(small displacement condition)
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4-WAVE NON-LINEARITY

fixed mirrors

movable piece of dielectric

Sankey,Yang, Zwickl, Jayich, and Harris, Nature Physics 6, 707 (2010)

Symmetry excludes from coupling hamiltonian terms odd in mechanical position 
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Can be used to read phonon number directly.
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END OF LECTURE


