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PROGRAM OF THIS YEAR'S LECTURES

Lecture I Introduction to nanomechanical systems

Lecture II: How do we model the coupling between electro-
magnetic modes and mechanical motion?

Lecture lll: Is zero-point motion of the detector variables a limita-
tion in the measurement of the position of a mechanical
oscillator?

Lecture IV: In the active cooling of a nanomechanical resonator,
IS measurement-based feedback inferior to autono-
mous feedback?

Lecture V: How close to the ground state can we bring a nano-
resonator?

Lecture VI: What oscillator characteristics must we choose to con-
vert quantum information from the microwave domain to
the optical domain? Lol



CALENDAR OF 2012 SEMINARS

May 15: Rob Schoelkopf (Yale University, USA)
Quantum optics and quantum computation with superconducting circuits.

May 22: Konrad Lehnert (JILA, Boulder, USA)
Micro-electromechanics: a new quantum technology.

May 29: Olivier Arcizet (Institut Néel, Grenoble)
A single NV defect coupled to a nanomechanical oscillator: hybrid nanomechanics.

June 5: lvan Favero (MPQ, Université Paris Diderot)
From micro to nano-optomechanical systems: photons interacting
with mechanical resonators.

June 12: A. Douglas Stone (Yale University, USA)
Lasers and anti-lasers: a mesoscopic physicist's perspective on scattering
from active and passive media.

June 19: Tobias J. Kippenberg (EPFL, Lausanne, Suisse)
Cavity optomechanics: exploring the coupling of light and micro- and

nanomechanical oscillators.
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LECTURE Ill : POSITION MEASUREMENT OF A
MECHANICAL RESONATOR IN QUANTUM LIMIT

QUTLINE

1. Quadrature representation of harmonic oscillator
2. Imprecision of single shot interference measurement of position

3. Continuous monitoring of position and associated backaction
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QUADRATURE REPRESENTATION OF
A QUANTUM HARMONIC OSCILLATOR
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These definitions yield properties useful later.

* see S. Haroche & J.M. Raimond, "Exploring the Quantum", Cambridge 2006 12-111-5



COHERENT STATE IN QUADRATURE
REPRESENTATION

py=e 1S ) ol )= 1) | 5(0)=|e45(0)
A=bb; (i )=n=gf; an=l

"Fresnel lollypop"
Q.4 yPop Q.+

S 24l =1
Imp | |
= Qm -________: ______ 1
SN .
9 i I ,” \ a)mt I
m
Refs=(l,)
For coherent G _
state: aussian
AQ ' distribution
m = SNm Ty of | values
2 m Vil 12-111-6




THE VACUUM STATE

|/=0)=[n=0) Qny

»

All coherent states can be thought of as a translated vacuum state in quadrature space.

Qm 1

Driving an harmonic
S ERGREEEEEE oscillator with an arbitrary
time-dependent force can
only result in displacing
the vacuum state.
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FLYING OSCILLATOR

A wave-packet propagating in medium with constant phase velocity can be seen as

as oscillator
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Measurement of a coherent state:

HOMODYNE MEASUREMENT
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HOMODYNE MEASUREMENT

Measurement of a coherent state:

density matrix at input of beams:

Pi :|aLO’aS><aS’aLO|
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Measurement of an arbitrary state:

Output is

(D)= Z\aLo\(coseLo<fs>+sin 6,6 <(§S>)

<D> = Qs + O 5O

RPN A "on
= Q) Qs + O 0

Ildeal homodyne setup measures a generalized quadrature
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FLUCTUATIONS OF A HOMODYNE MEASUREMENT

The photoelectron difference number is D = ﬁ1 — ﬁz
We suppose that the efficiency of the detector is unity.

=2(alod; +a oAl + 64 A, + 04 ,A] )
.
N J v

Y
Fluctuations are  Fluctuations are
of order N1/2 of order unity

We have thus, in the limit of large LO number of photons:

Fa N

D = 2 NLO (IAS COSHLO +QAS SinQLO)
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FLUCTUATIONS OF A HOMODYNE MEASUREMENT

The photoelectron difference number is D = ﬁ1 — ﬁz
We suppose that the efficiency of the detector is unity.

_of(at 5 | A At A A
= Z(aLOaS +aLOaS) Ao =0 +08,
=2(alod; +a oAl + 64 A, + 04 ,A] )
N Y
- N
Fluctuations are  Fluctuations are
of order N1/2 of order unity

We have thus, in the limit of large LO number of photons:
D=2\N, (IS coso, , + Qg sin QLO)
Probability detector inefficiency

finite LO strength result
in a further broadenin
P (XS ) ZAXS Y, J
| -

of this distribution.
: » D
cosé,, <IS > +sin g, <QS>
For a coherent state, =1 12-11I-108
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HOMODYNE MEASUREMENT
PERFORMS A PROJECTION IN
QUADRATURE PLANE

Qs 1

signal state
/
-
: . 2\/,;_7
3 Lo
3 ™ cos@Lo<fS>+sin 0., <(§S>

In the ideal case,

homodyne measurement
performs a noise-less
measurement of an oscillator
generalized quadrature.
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INTERFEROMETRIC MEASUREMENT OF POSITION

L=20,+X(t
Single shot « > . ( )
= S dna| RS\
[N Alf v,
[ ‘ a —_ N e l \\\\\ a)m
— o6 -~ i}
Ta <L o, @ ™ simplified
1 o |\ representation
k De < |/ of separation
e C \/:X of input and
n ZPF output beams
</
O
Cx . 50=2k6X
Qs —4keX S| D=2|05Lo|[lscosZkeX(t)+QS sin 2keX(t)]
- e’MZPFY "'m R o
I n . Sl 52|aLO||:IS+4keXZPFQSIm(t):|
0 ; 1 .
51, =/N&o ANK X por 7

Convolution of two fluctuations: 0
mechanical and probe photon shot noise.
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IS IT POSSIBLE TO MAKE PHOTON
SHOT NOISE NEGLIGIBLE COMPARED
TO POSITION FLUCTUATIONS?

1
IN OTHER WORDS, CAN WE HAVE = <ol
4\/ﬁkexZPF

OR EVEN %Jﬁ»l
DIFFICULT SINCE X, ~107m
27 X Jpp
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e
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TWO HELPFUL FACTORS:
- CAVITY (ELECTROMAGNETIC RESONATOR)

- MANY PHOTONS (LONG ACQUISITION TIME)
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ENHANCEMENT OF INTERFEROMETRIC
PHASE-SHIFT BY CAVITY
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see Cohadon,. Heidmann, and M. Pinard, PRL83, 3177(1999)



UWWAVE vs OPTICS
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MIXERS AND PHASE-SENSITIVE AMPLIFIERS

signal . —

Lo, ]

DC DC

Mixers have conversion gains less than unity.
Add at least 3dB of noise. Following amplifier adds also noise.

signal ->

ﬁ L.O. 4| L-O: 5C

Josephson parametric amplifiers
In phase sensitive mode amplify without
adding noise 1 quadrature of signal.
Has enough gain to beat noise of following amplifier.
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SPECTRAL DENSITY OF OSCILLATOR MOTION
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Total area under curve ~ number of phonons in mechanical resonator
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SPECTRAL DENSITY OF HOMODYNE SIGNAL

We now consider a continuous homodyne measurement.
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Apparent oscillator motion in
guadrature representation

«— Spectral density of oscillator
apparent motion if photon shot
noise is negligible, as well as

backaction.
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MEASUREP NOISE: IMPRECISION AND BACKACTION
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Standard Quantum Limit (SQL): optimal compromise between
iImprecision and backaction noises

At SQL, the total noise energy in the resonator is equivalent to a full phonon.
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IMPRECISION vs RESOLUTION

1) Measure fairness of coin by tossing it many times

\ 2500 trials will determine fairness with 1% imprecision
(@ 1 standard deviation)

2) Measure wavelength of incoming beam

width of slit
determines
resolution
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END OF LECTURE



