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electron can only be transported through the
system when the transition between the two-
electron states (N1,N2) ! (0,2) and (1,1) is
allowed. This condition is met when the nec-
essary energy cost to add one more electron
to the system is compensated for by the ac-
tion of a nearby plunger gate voltage, or the
voltage between the leads, which is a familiar
single-electron charging phenomenon (5).

Crucially, spin effects also markedly in-
fluence electron transport. Because the tunnel
coupling between the two sites is sufficiently
weak, the (N1,N2) ! (1,1) spin-singlet and
spin-triplet states are practically degenerate
(9). Additionally, for (N1,N2) ! (0,2), only a
spin singlet is permitted because of Pauli
exclusion. Therefore, electron transport is
only allowed for a channel made from the
(1,1) and (0,2) singlet states. This always
holds true for reverse bias when the chemical
potential of the left lead, "!, nearest site 1, is
lower than that of the right lead, "r, nearest
site 2, because only an antiparallel spin elec-
tron can be injected onto site 2 from the right
lead (Fig. 1A). On the other hand, for forward
bias, "! # "r, either the (1,1) singlet or triplet
can be populated with more or less the same
probability by injection of an electron onto
site 1 from the left lead. If the (1,1) singlet is
populated, a single-electron tunneling current
can flow through the singlet state. Once the
triplet is populated, however, subsequent
electron transfer from site 1 to 2 is blocked by
Pauli exclusion. Note that an electron arriv-
ing on site 1 usually cannot go back to the left
lead because of the fast relaxation of the hole
state left behind in the lead (10). Thus the
(1,1) triplet will sooner or later be occupied
on a time scale sufficiently longer than the
electron tunneling time between the leads,
and this should lead to clear current suppres-
sion, for example, in dc measurement. Be-
cause this blockade is due to spin and not
charge, we hereafter refer to this process as
“spin blockade,” and this provides current
rectification. Blockade of single-electron
transport associated with spin has been re-
ported for single-dot (11–13) and double-dot
(14, 15) systems. In most of these cases,
blockade appears only when the difference in
the total spin between the N and N $ 1
electron ground states (GSs) is greater than
1/2. Such a large difference cannot be made
up by single-electron tunneling events, but
this itself is not related to Pauli exclusion.

Our double-dot device is made by verti-
cally coupling two circular quantum dots that
are located between two contact leads called
the source and drain (Fig. 1B) (16, 17 ). The
lateral confinement in each dot imposed by
the surrounding Schottky gate is well approx-
imated by a 2D harmonic potential (6, 18). A
quantum dot with such a potential has atom-
like electronic properties: shells composed of
1s, 2p, 3s, 3d, . . . orbitals and the filling of

near degenerate states in accordance with
Hund’s first rule (6, 7 ). The typical charac-
teristic energy, %&0, of the lateral confine-
ment in each dot is about 4 meV for the
lowest 1s orbital state (18). Located %&0

above is the excited 2p orbital state. In our
vertical device configuration, the total num-
ber of electrons in the whole double-dot sys-
tem, N (! N1 $ N2), can be varied one-by-
one as a function of gate voltage, VG, starting
from N ! 0 (6, 17 ). Here, we label the two
dots “dot 1” and “dot 2,” and they correspond
to site 1 and site 2 in Fig. 1A, respectively.
Similarly, N1 (N2) is now the number of
electrons in dot 1 (dot 2). The transmission
coefficients for all the tunnel barriers (dot-
contact lead and dot-dot) are sufficiently
weak that electron transport can be discussed
just in terms of sequential tunneling between
the source and drain.

The general situation of Fig. 1A can be
reproduced in our structure (see Fig. 2A,
potential diagrams) if there is an appropriate
potential offset, 2', between the two quantum
dots at zero source-drain voltage, V ! 0 V
(19, 20). Then, just one electron is trapped in
the 1s orbital state of dot 2, and the two-
electron GS is either (N1, N2) ! (1,1) or
(0,2). For (1,1), the singlet and triplet states
are nearly degenerate because the coupling
between the two dots is very weak (9). For
(0,2), only the singlet GS is initially relevant.
A (0,2) triplet excited state (ES) can be
formed by putting two parallel spin electrons
in the 1s and 2p states in dot 2. However, its
energy is normally much higher than that of
the (1,1) and (0,2) GS, so it does not influ-
ence the transport in our discussion for the
moment. When viewing Fig. 1A, we can see
that electrons can be transported by the (0,2)

and (1,1) singlet states for reverse bias,
whereas for forward bias, the (1,1) triplet can
be populated, leading to the blockade of elec-
tron transport. We now define the electro-
chemical potential of the (N1, N2) GS to be
"(N1, N2) and the chemical potential of the
source (drain) lead to be "r ("!). Spin block-
ade in Fig. 1A can appear when electrons are
injected from the drain to the (1,1) triplet in
the nonlinear transport (21). We assume that
spin is conserved in the electron tunneling
throughout our double-dot system and that
there are no spin flips on a time scale suffi-
ciently longer than the electron tunneling
time. This condition actually holds for our
experiments, which we will explain later.

We measure the dc current, I, flowing
vertically through the two dots as a function
of VG and V to study the linear and nonlinear
electron transport. VG and V, respectively, are
used to change the electrostatic potential of
the two dots together, and the potential offset
between the two dots. By adjusting these
voltages and using a double-dot sample with
an appropriate potential offset 2' (19), we
can realize the situation in Fig. 1A. dI/dV –
VG measured for small V ((0 V) shows clear
Coulomb oscillation peaks (Fig. 2A, lower
right inset). N increases one-by-one, starting
from N ! 0 every time a current peak is
crossed as VG is made more positive. The
first peak (X) is very small but definitely
present at VG ( –2 V, and this indicates
transport through the double-dot system for N
fluctuating between 0 and 1. The second peak
(P) and the third peak (Q) are much larger.
This implies that tunneling is elastic between
the source and drain leads for N ! 172 and
273. However, because of the potential off-
set between the two dots, this is not the case

Fig. 1. Model for rectification of
the single-electron tunneling
current by the Pauli effect. (A)
Electron transport through a ge-
neric two-site system with one
electron trapped permanently on
site 2. For reverse bias, a trans-
port channel through two-elec-
tron singlet states is always
available; however, for suffi-
ciently large forward bias a trip-
let state with an electron on
each site is sooner or later occu-
pied. Further electron transport
is then blocked due to Pauli ex-
clusion. (B) Schematic of the
double-dot device (16–18). The
specific device we discuss is a
0.6-"m cylindrical mesa made from an AlGaAs (8 nm)/InGaAs (12 nm)/AlGaAs (6 nm)/InGaAs (12
nm)/AlGaAs (8 nm) triple barrier structure located between the n-GaAs source and drain leads.
Both quantum dots are strongly confined vertically by heterostructure barriers and softly confined
laterally by an approximate 2D harmonic potential imposed by the common Schottky gate
wrapped around the mesa. The tunnel coupling energy between two dots is estimated to be 0.3
meV (17). This is much smaller than the 2D harmonic potential energy (%&0 ( 4 meV) and the
charging energy for each dot (U ( 4 meV). The conditions in (A) are achieved by adjusting the
source-drain voltage, V, and the gate voltage, VG, in the presence of an appropriate potential offset
between the two dots.
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single-electron charging phenomenon (5).

Crucially, spin effects also markedly in-
fluence electron transport. Because the tunnel
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exclusion. Therefore, electron transport is
only allowed for a channel made from the
(1,1) and (0,2) singlet states. This always
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lower than that of the right lead, "r, nearest
site 2, because only an antiparallel spin elec-
tron can be injected onto site 2 from the right
lead (Fig. 1A). On the other hand, for forward
bias, "! # "r, either the (1,1) singlet or triplet
can be populated with more or less the same
probability by injection of an electron onto
site 1 from the left lead. If the (1,1) singlet is
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can flow through the singlet state. Once the
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electron transfer from site 1 to 2 is blocked by
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ment in each dot is about 4 meV for the
lowest 1s orbital state (18). Located %&0

above is the excited 2p orbital state. In our
vertical device configuration, the total num-
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tem, N (! N1 $ N2), can be varied one-by-
one as a function of gate voltage, VG, starting
from N ! 0 (6, 17 ). Here, we label the two
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Similarly, N1 (N2) is now the number of
electrons in dot 1 (dot 2). The transmission
coefficients for all the tunnel barriers (dot-
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port channel through two-elec-
tron singlet states is always
available; however, for suffi-
ciently large forward bias a trip-
let state with an electron on
each site is sooner or later occu-
pied. Further electron transport
is then blocked due to Pauli ex-
clusion. (B) Schematic of the
double-dot device (16–18). The
specific device we discuss is a
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gitudinal moment changes. For UGe2 the
superconducting coupling strength and transi-
tion temperature increase as the magnetic tran-
sition is approached by tuning the pressure (20).
The magnetic transition is, however, first order
(21), and UGe2 has not yet been studied under
the conditions necessary to drive it to a QCEP.
The apparent relationship of high field super-
conductivity to a field-induced quantum critical
point in URhGe established here, however, re-
inforces the general notion that new strongly
correlated electron ground states emerge close to
quantum critical transitions between apparently
simpler magnetic phases. An interesting possibil-
ity is that the low field superconductivity in
URhGe might also be related to the same quan-
tum critical point that we now outline. Super-
conductivity occurs when the upper critical field
for the superconducting state, Hc2, exceeds the
total magnetic field acting on the electrons. For
URhGe, as the applied field is reduced from HR

moving the material away from the QCEP, Hc2

is expected to fall rapidly. Superconductivity
would disappear when Hc2 falls below the ap-
plied field (for simplicity, the small internal field
in the sample due to its magnetization, m0M , 0.1
T, can be ignored). However, if Hc2 is still finite
at low fields, the condition for superconduc-
tivity (with a much weaker coupling strength)
would once again be fulfilled when the applied
field is reduced to zero.
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We observed mixing between two-electron singlet and triplet states in a double
quantum dot, caused by interactions with nuclear spins in the host semi-
conductor. This mixing was suppressed when we applied a small magnetic field
or increased the interdot tunnel coupling and thereby the singlet-triplet split-
ting. Electron transport involving transitions between triplets and singlets in turn
polarized the nuclei, resulting in marked bistabilities. We extract from the fluc-
tuating nuclear field a limitation on the time-averaged spin coherence time T2*
of 25 nanoseconds. Control of the electron-nuclear interaction will therefore
be crucial for the coherent manipulation of individual electron spins.

A single electron confined in a GaAs quantum
dot is often referred to as artificial hydrogen.
One important difference between natural and
artificial hydrogen, however, is that in the first,
the hyperfine interaction couples the electron
to a single nucleus, whereas in artificial hy-
drogen, the electron is coupled to about one
million Ga and As nuclei. This creates a subtle
interplay between electron spin eigenstates
affected by the ensemble of nuclear spins (the
Overhauser shift), nuclear spin states affected
by time-averaged electron polarization (the

Knight shift), and the flip-flop mechanism that
trades electron and nuclear spins (1, 2).

The electron-nuclear interaction has im-
portant consequences for quantum informa-
tion processing with confined electron spins
(3). Any randomness in the Overhauser shift
introduces errors in a qubit state, if no cor-
recting measures are taken (4–6). Even worse,
multiple qubit states, like the entangled states
of two coupled electron spins, are redefined by
different Overhauser fields. Characterization
and control of this mechanism will be critical
both for identifying the problems and finding
potential solutions.

We studied the implications of the hyper-
fine interaction on entangled spin states in
two coupled quantum dots—an artificial hydro-
gen molecule—in which the molecular states
could be controlled electrically. A random po-
larization of nuclear spins creates an inhomog-

eneous effective field that couples molecular
singlet and triplet states and leads to new eigen-
states that are admixtures of these two. We used
transport measurements to determine the degree
of mixing over a wide range of tunnel coupling
and observed a subtle dependence of this
mixing on magnetic field. We found that we
could controllably suppress the mixing by in-
creasing the singlet-triplet splitting. This ability
is crucial for reliable two-qubit operations such
as the SWAP gate, which interchanges the spin
states of the two dots (3).

Furthermore, we found that electron trans-
port itself acts back on the nuclear spins through
the hyperfine interaction, and time-domain
measurements revealed complex, often bistable,
behavior of the nuclear polarization. Under-
standing the current-induced nuclear polariza-
tion is an important step toward electrical
control of nuclear spins. Such control will be
critical for electrical generation and detection of
entangled nuclear spin states (7) and for transfer
of quantum information between electron and
nuclear spin systems (8, 9). It may also be
possible to control the nuclear field fluctua-
tions themselves in order to achieve longer
electron spin coherence times (10–12).

We investigated the coupled electron-
nuclear system using electrical transport mea-
surements through two dots in series (13), in a
regime where the Pauli exclusion principle
blocks current flow (14, 15). The dots were
defined with electrostatic gates on a GaAs/
AlGaAs heterostructure (Fig. 1E) (16). The
gate voltages were tuned such that one electron
always resides in the right dot, and a second
electron could tunnel from the left reservoir,
through the left and right dots, to the right
reservoir (Fig. 1D). This current-carrying cycle
can be described with the occupations (m, n)
of the left and right dots: (0,1) Y (1,1) Y
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gitudinal moment changes. For UGe2 the
superconducting coupling strength and transi-
tion temperature increase as the magnetic tran-
sition is approached by tuning the pressure (20).
The magnetic transition is, however, first order
(21), and UGe2 has not yet been studied under
the conditions necessary to drive it to a QCEP.
The apparent relationship of high field super-
conductivity to a field-induced quantum critical
point in URhGe established here, however, re-
inforces the general notion that new strongly
correlated electron ground states emerge close to
quantum critical transitions between apparently
simpler magnetic phases. An interesting possibil-
ity is that the low field superconductivity in
URhGe might also be related to the same quan-
tum critical point that we now outline. Super-
conductivity occurs when the upper critical field
for the superconducting state, Hc2, exceeds the
total magnetic field acting on the electrons. For
URhGe, as the applied field is reduced from HR

moving the material away from the QCEP, Hc2

is expected to fall rapidly. Superconductivity
would disappear when Hc2 falls below the ap-
plied field (for simplicity, the small internal field
in the sample due to its magnetization, m0M , 0.1
T, can be ignored). However, if Hc2 is still finite
at low fields, the condition for superconduc-
tivity (with a much weaker coupling strength)
would once again be fulfilled when the applied
field is reduced to zero.
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million Ga and As nuclei. This creates a subtle
interplay between electron spin eigenstates
affected by the ensemble of nuclear spins (the
Overhauser shift), nuclear spin states affected
by time-averaged electron polarization (the

Knight shift), and the flip-flop mechanism that
trades electron and nuclear spins (1, 2).

The electron-nuclear interaction has im-
portant consequences for quantum informa-
tion processing with confined electron spins
(3). Any randomness in the Overhauser shift
introduces errors in a qubit state, if no cor-
recting measures are taken (4–6). Even worse,
multiple qubit states, like the entangled states
of two coupled electron spins, are redefined by
different Overhauser fields. Characterization
and control of this mechanism will be critical
both for identifying the problems and finding
potential solutions.

We studied the implications of the hyper-
fine interaction on entangled spin states in
two coupled quantum dots—an artificial hydro-
gen molecule—in which the molecular states
could be controlled electrically. A random po-
larization of nuclear spins creates an inhomog-

eneous effective field that couples molecular
singlet and triplet states and leads to new eigen-
states that are admixtures of these two. We used
transport measurements to determine the degree
of mixing over a wide range of tunnel coupling
and observed a subtle dependence of this
mixing on magnetic field. We found that we
could controllably suppress the mixing by in-
creasing the singlet-triplet splitting. This ability
is crucial for reliable two-qubit operations such
as the SWAP gate, which interchanges the spin
states of the two dots (3).

Furthermore, we found that electron trans-
port itself acts back on the nuclear spins through
the hyperfine interaction, and time-domain
measurements revealed complex, often bistable,
behavior of the nuclear polarization. Under-
standing the current-induced nuclear polariza-
tion is an important step toward electrical
control of nuclear spins. Such control will be
critical for electrical generation and detection of
entangled nuclear spin states (7) and for transfer
of quantum information between electron and
nuclear spin systems (8, 9). It may also be
possible to control the nuclear field fluctua-
tions themselves in order to achieve longer
electron spin coherence times (10–12).

We investigated the coupled electron-
nuclear system using electrical transport mea-
surements through two dots in series (13), in a
regime where the Pauli exclusion principle
blocks current flow (14, 15). The dots were
defined with electrostatic gates on a GaAs/
AlGaAs heterostructure (Fig. 1E) (16). The
gate voltages were tuned such that one electron
always resides in the right dot, and a second
electron could tunnel from the left reservoir,
through the left and right dots, to the right
reservoir (Fig. 1D). This current-carrying cycle
can be described with the occupations (m, n)
of the left and right dots: (0,1) Y (1,1) Y
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(0,2) Y (0,1). When an electron enters from
the left dot, the two-electron system forms ei-
ther a molecular singlet, S(1,1), or a molecular
triplet, T(1,1). From S(1,1), the electron in the
left dot can move to the right dot to form
S(0,2). From T(1,1), however, the transition
to (0,2) is forbidden by spin conservation
ET(0,2) is much higher in energy than S(0,2)^.
Thus, as soon as T(1,1) is occupied, further
current flow is blocked (we refer to this ef-
fect as Pauli blockade).

A characteristic measurement of this block-
ade is shown in Fig. 1A. The suppression of
current (G80 fA) in the region defined by
dashed lines is a signature of Pauli blockade
(14, 15) (fig. S1 and supporting text). Fig.
1B shows a similar measurement, but with a
much weaker interdot tunnel coupling t. Strik-
ingly, a large leakage current appears in the
Pauli blockaded region, even though the barrier
between the two dots is more opaque. Fur-
thermore, this leakage current was substantially
reduced by an external magnetic field of only
100 mT (Fig. 1C). Such a strong field de-
pendence is unexpected at first glance, because
the in-plane magnetic field, Bext, couples primar-
ily to spin but the Zeeman energies (EZ) involved
are very small (EZ È 2.5 meV at Bext 0 100 mT,
as compared with a thermal energy ofÈ15 meV
at 150 mK, for example).

Leakage in the Pauli blockade regime
occurs when singlet and triplet states are
coupled. The T(1,1) that would block current
can then transition to the S(1,1) state and the
blockade is lifted (Fig. 1D). As we will show,
coupling of singlets and triplets (Fig. 1, B and
C) in our measurements is caused by the hyper-
fine interaction between the electron spins and
the Ga and As nuclear spins Eother leakage
mechanisms can be ruled out (supporting text)^.

The hyperfine interaction between an elec-
tron with spin S

Y
and a nucleus with spin I

Y

has the form (AI
Y
I S

Y
), where A characterizes

the coupling strength. An electron coupled to
an ensemble of n nuclear spins experiences an
effective magnetic field B

YYY
NÈ 1

ðgmBÞ
Pn

i AiI
Y

i,
with g the electron g factor and mB the Bohr
magneton (1). For fully polarized nuclear spins
in GaAs, BN È 5 T (17). For unpolarized nu-
clear spins, statistical fluctuations give rise to
an effective field pointing in a random di-
rection with an average magnitude of 5 T/¾n
(4, 5, 18). Quantum dots like those measured
here contain n È 106 nuclei, so ¬B

YYY
N ¬ È 5 mT.

Nuclei in two different dots give rise to ef-
fective nuclear fields, B

YYY
N1 and B

YYY
N2, that are

uncorrelated. Although the difference in field
DB
YYY
N 0 B

YYY
N1 j B

YYY
N2 is small, corresponding to

an energy EN K gmB¬DB
YYY
N ¬ È 0:1 meV, it

nevertheless plays a critical role in Pauli block-
ade. The (1,1) triplet state that blocks current
flow consists of one electron on each of the two
dots. When these two electrons are subject to
different fields, the triplet is mixed with the sin-
glet and Pauli blockade is lifted. For instance, an

inhomogeneous field along ẑ causes the triplet
kT0À 0

1
¾2ðkj,À þ k,jÀÞ to evolve into the sin-

glet 1
¾2 ðkj,À j k,jÀÞ. Similarly, the evolution

of the other two triplet states, kTþÀ 0 kjjÀ and
kTjÀ 0 k,,À, into the singlet is caused by x̂
and ŷ components of DB

YYY
N .

The degree of mixing by the inhomo-
geneous field depends on the singlet-triplet
energy splitting, EST. Singlet and triplet states
that are close together in energy (EST ¡ EN)
are strongly mixed, whereas the perturbation
caused by the nuclei on states far apart in
energy (EST d EN) is small.

The singlet-triplet splitting depends on the
interdot tunnel coupling t and on the detuning
of left and right dot potentials DLR. DLR and t
were controlled experimentally with gate volt-
ages (Fig. 1E). Gate voltage Vt controlled the

interdot tunnel coupling. VL and VR set the de-
tuning, and thereby determined whether trans-
port was inelastic (detuned levels), resonant
(aligned levels), or blocked by Coulomb block-
ade (Fig. 1F). The coupling of the dots to the
leads was held constant with Vlead.

The effect of the two tunable parameters t
and DLR on the singlet and triplet energies is
illustrated in Fig. 2, A and B. For weak tunnel
coupling (t È 0), and in the absence of a
hyperfine interaction (EN È 0), the (1,1)
singlet and (1,1) triplet states are nearly
degenerate (Fig. 2A). A finite interdot tunnel
coupling t leads to an anticrossing of S(1,1)
and S(0,2). The level repulsion results in an
increased singlet-triplet splitting that is strong-
ly dependent on detuning (Fig. 2B). At the res-
onant condition (DLR 0 0, aligned levels), the

Fig. 1. Pauli blockade and leakage current. (A) Color-scale plot of the current through two coupled
dots as a function of the left and right dot potentials (voltage bias, 800 meV; Vt 0 j108 mV). The
experimental signature of Pauli blockade is low current (G80 fA) in the area denoted by dashed
gray lines. (B) Analogous data for smaller interdot tunnel coupling (Vt 0 j181 mV), with the same
color scale as in (A). A marked increase of leakage current is seen in the lower part of the Pauli
blockaded area (the green and yellow band). Inset: One-dimensional trace along the solid gray line,
with Coulomb blockaded, resonant, and inelastic transport regimes marked as defined in (F). (C)
Analogous data for the same tunnel coupling as in (B), but for Bext 0 100 mT. The leakage current
from (B) is strongly suppressed. (D) Two level diagrams that illustrate Pauli blockade in coupled
quantum dots. When the (1,1) triplet evolves to a (1,1) singlet (red arrow), Pauli blockade is lifted.
(E) Scanning electron micrograph showing the device geometry. White arrows indicate current flow
through the two coupled dots (dotted line). (F) Level diagrams illustrating three transport regimes. q:
Coulomb blockade; transport would require absorption of energy. g: Resonant transport; the dot
levels are aligned. þ: Inelastic transport; energy must be transferred to the environment, for instance,
by emitting a phonon.
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two new singlet eigenstates are equidistant
from the triplet state, both with EST 0 ¾2t.
For finite detuning (finite but still smaller
than the single dot S-T splitting), one singlet
state comes closer to the triplet state (EST È
t2/DLR), whereas the other moves away. In Fig.
2, A and B, singlet and triplet states are pure
eigenstates (not mixed), and therefore Pauli
blockade would be complete.

The additional effect of the inhomoge-
neous nuclear field is shown in Fig. 2, C and
D. For small t (¾2t, t2/DLR G EN), the (1,1)
singlet and (1,1) triplet are close together in
energy and therefore strongly mixed (purple
lines) over the entire range of detuning. For t
such that t2/DLR G EN G ¾2t, triplet and singlet
states mix strongly only for finite detuning.
This is because EST is larger than EN for
aligned levels but smaller than EN at finite
detuning. For still larger t (¾2t, t2/DLR 9 EN,
not shown in Fig. 2), mixing is weak over the

entire range of detuning. In the cases where
mixing between S and T is strong, as in Fig. 2,
C and D (for large detuning), Pauli blockade is
lifted and a leakage current results.

The competition between EST and EN can
be seen experimentally by comparing one-
dimensional traces of leakage current as a func-
tion of detuning over a wide range of t (Fig.
3A). Resonant current appears as a peak at
DLR 0 0 and inelastic leakage as the shoulder
at DLR 9 0 (19). When the interdot tunnel
coupling was small, both resonant and inelas-
tic transport were allowed because of singlet-
triplet mixing, and both rose as the middle
barrier became more transparent. As the tun-
nel coupling was raised further, a point was
reached where EST became larger than the nu-
clear field and Pauli blockade suppressed the
current (Fig. 1A). The maximum resonant cur-
rent occurred at a smaller value of t compared
to the maximum inelastic current (Fig. 3A,

Fig. 2. Two-electron level diagrams showing energy as a function of detuning DLR. Detuning is defined
so that the energy of T(1,1) remains constant as DLR varies (fig. S1B and supporting text). T(0,2) is not
shown as it occurs far above the energies shown here. The panels on the left illustrate the effect of t;
the panels on the right include the additional effect of an inhomogeneous magnetic field. Pure singlet
and triplet states are drawn in blue and red, respectively; strong admixtures are in purple. The blue
(q), white (g), and yellow (þ) background corresponds to the Coulomb blockade, resonant, and
inelastic transport regimes, respectively. (A) For small tunnel coupling, T(1,1) and S(1,1) are nearly
degenerate. (B) For finite t, level repulsion between the singlet states results in a larger singlet-triplet
splitting than shown in (A), which depends on detuning. The tunnel coupling does not mix singlet and
triplet states. For large DLR (that are still smaller than the single dot S-T splitting), EST È t2/DLR. (C and
D) An inhomogeneous field mixes triplet and singlet states that are close in energy (purple lines). For
clarity, only one triplet state is shown in the main panels. (C) For small t, T(1,1) and S(1,1) mix
strongly over the full range of detuning. (D) For large t, T(1,1) mixes strongly with the singlet only for
large detuning. The insets to (C) and (D) show the effect of an external magnetic field on the two-
electron energy levels. All three triplets are shown in the insets; the triplets kTþÀ and kTjÀ split off from
kT0À because of Bext. The leakage current is highest in the regions indicated by black dotted ellipses.

Fig. 3. The measured leakage current results
from a competition between EN, EST, and EZ. (A)
One-dimensional traces of the leakage current as
a function of detuning at Bext 0 0, for a wide
range of tunnel couplings (analogous to the inset
of Fig. 1B). Coulomb blockade, resonant trans-
port, and inelastic transport are indicated as in
Fig. 2. Inset: Leakage current along the dotted
gray and orange lines is shown as a function of
Vt. Resonant and inelastic leakage (gray and
orange markers) reach a maximum at different
tunnel couplings (Vt 0 j190 mV and j150 mV,
respectively). (B) For small tunnel coupling (GEN),
both the resonant and inelastic leakage currents
drop monotonically with Bext. Inset: Magnetic field
dependence of the inelastic current along the
dotted line (DLR 0 40 meV). (C) For larger t (9EN),
the resonant leakage current is maximum at
Bext 0 10 mT. Inset: Field dependence of the
resonant peak height (dotted line). (D) For still
larger t, the resonant current is strongly reduced
at low field (main panel), then becomes unstable
for higher field (inset).
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from the triplet state, both with EST 0 ¾2t.
For finite detuning (finite but still smaller
than the single dot S-T splitting), one singlet
state comes closer to the triplet state (EST È
t2/DLR), whereas the other moves away. In Fig.
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This is because EST is larger than EN for
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not shown in Fig. 2), mixing is weak over the
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mixing between S and T is strong, as in Fig. 2,
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lifted and a leakage current results.

The competition between EST and EN can
be seen experimentally by comparing one-
dimensional traces of leakage current as a func-
tion of detuning over a wide range of t (Fig.
3A). Resonant current appears as a peak at
DLR 0 0 and inelastic leakage as the shoulder
at DLR 9 0 (19). When the interdot tunnel
coupling was small, both resonant and inelas-
tic transport were allowed because of singlet-
triplet mixing, and both rose as the middle
barrier became more transparent. As the tun-
nel coupling was raised further, a point was
reached where EST became larger than the nu-
clear field and Pauli blockade suppressed the
current (Fig. 1A). The maximum resonant cur-
rent occurred at a smaller value of t compared
to the maximum inelastic current (Fig. 3A,

Fig. 2. Two-electron level diagrams showing energy as a function of detuning DLR. Detuning is defined
so that the energy of T(1,1) remains constant as DLR varies (fig. S1B and supporting text). T(0,2) is not
shown as it occurs far above the energies shown here. The panels on the left illustrate the effect of t;
the panels on the right include the additional effect of an inhomogeneous magnetic field. Pure singlet
and triplet states are drawn in blue and red, respectively; strong admixtures are in purple. The blue
(q), white (g), and yellow (þ) background corresponds to the Coulomb blockade, resonant, and
inelastic transport regimes, respectively. (A) For small tunnel coupling, T(1,1) and S(1,1) are nearly
degenerate. (B) For finite t, level repulsion between the singlet states results in a larger singlet-triplet
splitting than shown in (A), which depends on detuning. The tunnel coupling does not mix singlet and
triplet states. For large DLR (that are still smaller than the single dot S-T splitting), EST È t2/DLR. (C and
D) An inhomogeneous field mixes triplet and singlet states that are close in energy (purple lines). For
clarity, only one triplet state is shown in the main panels. (C) For small t, T(1,1) and S(1,1) mix
strongly over the full range of detuning. (D) For large t, T(1,1) mixes strongly with the singlet only for
large detuning. The insets to (C) and (D) show the effect of an external magnetic field on the two-
electron energy levels. All three triplets are shown in the insets; the triplets kTþÀ and kTjÀ split off from
kT0À because of Bext. The leakage current is highest in the regions indicated by black dotted ellipses.

Fig. 3. The measured leakage current results
from a competition between EN, EST, and EZ. (A)
One-dimensional traces of the leakage current as
a function of detuning at Bext 0 0, for a wide
range of tunnel couplings (analogous to the inset
of Fig. 1B). Coulomb blockade, resonant trans-
port, and inelastic transport are indicated as in
Fig. 2. Inset: Leakage current along the dotted
gray and orange lines is shown as a function of
Vt. Resonant and inelastic leakage (gray and
orange markers) reach a maximum at different
tunnel couplings (Vt 0 j190 mV and j150 mV,
respectively). (B) For small tunnel coupling (GEN),
both the resonant and inelastic leakage currents
drop monotonically with Bext. Inset: Magnetic field
dependence of the inelastic current along the
dotted line (DLR 0 40 meV). (C) For larger t (9EN),
the resonant leakage current is maximum at
Bext 0 10 mT. Inset: Field dependence of the
resonant peak height (dotted line). (D) For still
larger t, the resonant current is strongly reduced
at low field (main panel), then becomes unstable
for higher field (inset).
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sum of two gaussian peaks because part of the popu-
lation initially in the (1,1) state relaxes into the (0,2)
state during the integration time τM, with the relaxation
time constant T1 [8]. The normalized number of events
n(Vrf) = N(Vrf)/

∫∞
−∞N(Vrf)dVrf is modeled as

n(Vrf) = nS(Vrf) + nT (Vrf) (1)

with the events originating from singlet states nS(Vrf)
and from triplet states nT (Vrf). These are given by

nS(Vrf) = (1− 〈PT 〉) e−
(Vrf−V

(S)
rf )2

2σ2
1√
2πσ

(2)

nT (Vrf) = e−τM/T1〈PT 〉 e−(Vrf−V (T )
rf )2/(2σ2) +

∫ ∞

−∞

τM

T1

〈PT 〉
∆Vrf

e−
V−V

(S)
rf

∆Vrf

τM
T1 e−

(Vrf−V )2

2σ2
dV√
2πσ

(3)

with the triplet probability 〈PT 〉, averaged over all τS.
The plot of Eq. (1) in Fig. 2(b) uses 〈PT 〉 = 0.5, T1 =
34 µs, and peak positions V (S)

rf , V (T )
rf , determined as de-

scribed below [Fig. 2(c,e)]. The width σ [23] is obtained
from the control experiment.

The parameters T1 and 〈PT 〉 are extracted from the
raw data Vrf(τ), which is plotted as a function of the
time τ spent at point M in Fig. 2(c). Each data point
for τ = 0.5− 15 µs, is averaged over all 7000 cycles with
varying τS. The signal is fitted with [8]

Vrf(τ) = V (S)
rf + 〈PT 〉∆Vrf e−τ/T1 (4)

using fit parameters T1 and 〈PT 〉. The singlet position
V (S)

rf and the peak spacing ∆Vrf [23] are fixed, as ob-
tained from a fit of the model Eq. (1) to the histogram for
τM = 15 µs [Fig. 2(e)]. For the fit of Eq. (1) the parame-
ters T1 and 〈PT 〉 are self-consistently fixed to the values
extracted from the raw data Vrf(τ) [Eq. (4), Fig. 2(c)].

Maximizing the fidelity by optimization of the inte-
gration time τM is a tradeoff between increasing the sig-
nal to noise ratio ∝ √

τM and limiting relaxation during
τM. The histograms of single-shot outcomes 〈Vrf〉τM in
Fig. 2(d), for integration times τM = 0.25 − 15 µs show
that the two peaks can no longer be clearly resolved for
τM < 1 µs while the relative height of the triplet peak
reduces with increasing τM. Common benchmarks for
single-shot readout [24] are the fidelities FS , FT of sin-
glet, triplet measurement:

FS = 1−
∫ ∞

VT

nS(V )dV, FT = 1−
∫ VT

−∞
nT (V )dV. (5)

The integral in the expression for FS (FT ) is the proba-
bility to assign a singlet as a triplet (a triplet as a sin-
glet). Both quantities are combined to define the visibil-
ity V = FS + FT − 1. The fidelities and the visibility for
a single-shot measurement with τM = 7 µs are calculated
from the data in Fig. 2(b) and plotted in Fig. 2(f) as

(a) (b)

(c)

VT

FIG. 3: (a) Single-shot outcomes 〈Vrf〉τM for 6000 cycles, puls-
ing to ε = εS [Fig. 1(b)] for τS, stepped by ∼ 17 ns every 200
cycles. Points in the green (blue) region are above (below)
the threshold VT and assigned as triplet (singlet). (b) Single-
shot outcomes (gray markers) and triplet probabilities (black
circles) over τS with three different periods. (c) Rapid acqui-
sition of 108 PT traces at times t. PT is determined from 400
measurements per τS.

a function of the threshold voltage VT. The maximum
visibility ∼ 90% is achieved for VT slightly less than the
mean of V (T )

rf and V (S)
rf so that a triplet decaying towards

the end of τM still gets counted correctly.
To determine the optimal values of τM and VT the max-

imum visibility V max is calculated as a function of τM

from Eq. (1) using the parameters T1, 〈PT 〉, determined
from Fig. 2(c), V (T )

rf and V (S)
rf , from Fig. 2(e) and σ(τM),

determined from the control experiment [23]. The thresh-
old VT for which the visibility is maximized is plotted to-
gether with V max in Fig. 2(g). The maximum visibility,
obtained for τM ∼ 6 µs, is V max ! 90%.
The single-shot readout is applied to observe the evo-

lution of the singlet triplet qubit at point S [4], driven
by the difference in the hyperfine induced effective mag-
netic (Overhauser) field ∆Bnuc

z between the left and right
quantum dot. Single-shot outcomes 〈Vrf〉 are shown as a
function of τS in Fig. 3(a) for a pulse sequence [Fig. 1(d)]
with τS = 1− 500 ns stepped by 17 ns every 200 cycles,
for a total of 6000 consecutive cycles. Points that are
in the green (blue) region are above (below) the thresh-
old VT and are assigned as triplet (singlet) states. For
each τS the triplet probability PT is the percentage of
single-shot outcomes above threshold. Probabilities PT

for the single-shot data in Fig. 3(a) are shown in the
top graph of Fig. 3(b) as a function of τS. The two
graphs below show probability traces with identical pa-
rameters. Single-shot outcomes from which the proba-
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Controlling Hyperfine Coupling using Nanotube Quantum Dots

1 μm

Charge sensor
• CVD growth with 99% 12CH4 or 99% 13CH4 

20 μm

13CH4
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Devices
• CVD growth with 

12CH4 or 13CH4 

• Fe catalyst

• Pd contacts

• Al2O3 + NO2 ALD

• Al top gates
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Double dot Charge sensor
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Electron-nuclear interaction in 13C nanotube double quantum dots

H. O. H. Churchill, A. J. Bestwick, J. W. Harlow, F. Kuemmeth,
D. Marcos, C. H. Stwertka, S. K. Watson†, and C. M. Marcus

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

For coherent electron spins, hyperfine cou-
pling to nuclei in the host material can ei-
ther be a dominant source of unwanted spin
decoherence1–3 or, if controlled effectively, a re-
source allowing storage and retrieval of quan-
tum information4–7. To investigate the effect of
a controllable nuclear environment on the evo-
lution of confined electron spins, we have fabri-
cated and measured gate-defined double quan-
tum dots with integrated charge sensors made
from single-walled carbon nanotubes with a vari-
able concentration of 13C (nuclear spin I = 1/2)
among the majority zero-nuclear-spin 12C atoms.
Spin-sensitive transport in double-dot devices
grown using methane with the natural abundance
(∼ 1%) of 13C is compared with similar devices
grown using an enhanced (∼ 99%) concentration
of 13C. We observe strong isotope effects in spin-
blockaded transport and from the dependence on
external magnetic field, estimate the hyperfine
coupling in 13C nanotubes to be on the order
of 100 µeV, two orders of magnitude larger than
anticipated theoretically8,9. 13C-enhanced nan-
otubes are an interesting new system for spin-
based quantum information processing and mem-
ory, with nuclei that are strongly coupled to gate-
controlled electrons, differ from nuclei in the sub-
strate, are naturally confined to one dimension,
lack quadrupolar coupling, and have a readily
controllable concentration from less than one to
105 per electron.

Techniques to prepare, manipulate, and measure few-
electron spin states in quantum dots has advanced con-
siderably in recent years, with the leading progress in
III-V semiconductor systems2,3,10–12. All stable isotopes
of III-V semiconductors, such as GaAs, have nonzero nu-
clear spin, and the hyperfine coupling of electron spins
to host nuclei is a dominant source of spin decoherence
in these materials1,2,13. To eliminate this source of de-
coherence, group IV semiconductors—various forms of
carbon, silicon, and silicon-germanium—which have pre-
dominantly zero nuclear spin, are being vigorously pur-
sued as the basis of coherent spin electronic devices. Dou-
ble quantum dots have recently been demonstrated in
carbon nanotubes14–18, including recent investigation of
spin effects19,20.

†Present address: Department of Physics, Middlebury College,
Middlebury, Vermont 05753, USA (C.H.S., S.K.W.).
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Figure 1: Nanotube double dot with integrated charge sen-
sor. a, SEM micrograph (with false color) of a device similar to
the measured 12C and 13C devices. The carbon nanotube (not vis-
ible) runs horizontally under the four Pd contacts (red). Top-gates
(blue) create voltage-tunable tunnel barriers allowing the forma-
tion of a single or double quantum dot between contacts 1 and 2.
Plunger gates L and R (green) control the occupancy of the double
dot. A separate single dot contacted by Pd contacts 3 and 4 is con-
trolled with gate plunger gate S (gray) and is capacitively coupled
to the double dot via a coupling wire (orange). b, Current through
the double dot, Idd, (color scale) with the top-gates configured to
form a large single dot. c, When carriers beneath the middle gate,
M, are depleted, Idd shows typical double-dot transport behavior,
demarcating the honeycomb charge stability pattern. d, Within
certain gate voltage ranges, honeycomb cells with larger addition
energy and fourfold periodicity (outlined with dashed lines) indi-
cate the filling of spin and orbital states in shells. Source-drain bias
is −1.0 mV for b, c, and d.

The devices reported are based on single-walled car-
bon nanotubes grown by chemical vapor deposition us-
ing methane feedstock containing either 99% 13C (de-
noted 13C devices) or 99% 12C (denoted 12C devices; see
Methods)21. The device design (Fig. 1a) uses two pairs
of Pd contacts on the same nanotube; depletion by top-
gates (blue, green, and gray in Fig. 1a) forms a double
dot between one pair of contacts and a single dot between
the other. Devices are highly tunable, as demonstrated
in Fig. 1, which shows that tuning the voltage on gate M
(Fig. 1b) adjusts the tunnel rate between dots, allowing
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demarcating the honeycomb charge stability pattern. d, Within
certain gate voltage ranges, honeycomb cells with larger addition
energy and fourfold periodicity (outlined with dashed lines) indi-
cate the filling of spin and orbital states in shells. Source-drain bias
is −1.0 mV for b, c, and d.

The devices reported are based on single-walled car-
bon nanotubes grown by chemical vapor deposition us-
ing methane feedstock containing either 99% 13C (de-
noted 13C devices) or 99% 12C (denoted 12C devices; see
Methods)21. The device design (Fig. 1a) uses two pairs
of Pd contacts on the same nanotube; depletion by top-
gates (blue, green, and gray in Fig. 1a) forms a double
dot between one pair of contacts and a single dot between
the other. Devices are highly tunable, as demonstrated
in Fig. 1, which shows that tuning the voltage on gate M
(Fig. 1b) adjusts the tunnel rate between dots, allowing
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Figure 2: Spin blockade in a 13C nanotube double dot. a, Current Idd (color scale) at +1.0 mV

source-drain bias, the non-spin-blockaded bias direction. Transport is dominated by resonant tunneling

through the ground state at the base of the finite bias triangles and through an excited state at a detuning

of 0.7 meV. b, Idd (color scale) at −1.0 mV source-drain bias, the spin-blockaded bias direction. Idd is

suppressed except near the tips of the transport triangles, where an excited state of the right dot becomes

accessible. Suppressed transport for one bias direction is the signature of spin blockade. c, Charge sensing

signal, gs, (conductance of the sensing dot between contacts 3 and 4 in Fig. 1a), acquired simultaneously

with a detects the the time-averaged occupation of the right dot. d, Charge sensing signal gs for −1.0 mV

bias (blockade direction). The transfer of charge from the left dot to the right is delayed until the excited

state is reached at high detuning. In a–d dashed lines indicate allowed regions for current flow in the absence

of blockade. e, Schematic of spin-blockaded transport. Any spin may occupy the left dot, but only a spin

singlet is allowed in the right dot, suppressing negative bias current once an electron enters the left dot and

forms a triplet state. f, Current Idd near zero detuning (position marked by circles in a and b) as a function

of magnetic field for positive bias (non-blockade, red trace) and negative bias (blockade, for two values of

VM, purple and green traces). For VM = 222, Idd was multiplied by 5.
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Magnetic field dependence of spin relaxation 3
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Figure 3: Contrasting magnetic field dependence of leakage
current for 12C and 13C devices. Leakage current through spin
blockade versus detuning and B|| for (a) 12C and (b) 13C devices.
The vertical axes in a and b are interdot detuning as indicated by
the orange lines in c and d, respectively. In a B|| was swept and
detuning stepped, while in b detuning was swept and B|| stepped.
Bias is−1.5 mV in c and−4 mV in d. e and f show cuts along B|| at
the detunings indicated by the red lines in a and b, respectively.
The fit in e is a Lorentzian with a width of 30 mT, and the fit in f
is to the theory of Jouravlev and Nazarov25, providing a measure
of Bnuc = 6.1 mT.

find that leakage current minima can occur at B|| = 0 in
both 12C and 13C devices, particularly for stronger inter-
dot tunneling. For weaker interdot tunneling, however,
only the 13C devices show maxima of spin-blockade leak-
age at B|| = 0. In all cases, the positive bias (non-spin-
blockade) current shows no appreciable field dependence.

Figure 3e shows spin-blockade leakage current as a
function of B|| at fixed detuning (the detuning value is
shown as a black line in Fig. 3a), along with a best-fit
lorentzian, for the 12C device. The lorentzian form was
not motivated by theory, but appears to fit rather well.
The width of the dip around B|| = 0 increases with in-
terdot tunneling (configuration Fig. 3e has t ∼ 50 µeV,
based on charge-state transition width27). We note that
a comparable zero-field dip in spin-blockade leakage cur-
rent was recently reported in a double dot formed in
an InAs nanowire28, a material system with strong spin-
orbit coupling. In the present system, the zero-field dip
may also be attributable to spin-orbit coupling29, re-
sulting in phonon-mediated relaxation that vanishes at
B|| = 0.

Hyperfine coupling appears to the confined electrons
as an effective local Zeeman field (the Overhauser field)
that fluctuates in time independently in the two dots,
driven by thermal excitation of nuclear spins. The differ-
ence in local Overhauser fields in the two dots will induce
rapid mixing of all two-electron spin states whenever the
applied field is less than the typical difference in fluctuat-
ing Overhauser fields. (At higher fields, only the m = 0
triplet can rapidly mix with the singlet). How hyperfine-
mediated spin mixing translates to a field dependence
of spin-blockade leakage current was investigated exper-
imentally in GaAs devices26, with theory developed by
Jouravlev and Nazarov.25

Field dependence of spin-blockade leakage current for
the 13C device is shown Fig. 3f, along with a theoretical
fit (Eq. (11) of Ref. 25, with a constant background cur-
rent added), from which we extract a root mean square
amplitude of fluctuations of the local Overhauser fields,
Bnuc = 6.1 mT. Assuming gaussian distributed Over-
hauser fields and uniform coupling, Bnuc is related to the
hyperfine coupling constant A by gµBBnuc = A/

√
N,

where g is the electron g-factor and N is the number of
13C nuclei in each dot25. Taking N ∼ 3–10 × 105 and
g = 2 (see Supplement), yields A ∼ 1–2 × 10−4 eV, a
value that is two orders of magnitude larger than pre-
dicted for carbon nanotubes8 or measured in fullerenes9.

Signatures of dynamic nuclear polarization provide fur-
ther evidence of a strong hyperfine interaction in 13C dou-
ble dots. Hysteresis in the spin-blockade leakage current
near zero detuning is observed when the magnetic field is
swept over a Tesla-scale range, as shown in Fig. 4a. The
data in Fig. 4 are from the same 13C device as in Fig. 3,
but with the barriers tuned such that cotunneling pro-
cesses provide a significant contribution to the leakage
current.

We interpret the hysteresis in Fig. 4a as resulting from
a net nuclear polarization induced by the electron spin
flips required to circumvent spin blockade30. This nuclear
polarization generates an Overhauser field felt by the
electron spins that opposes B|| once B|| passes through
zero. The value of the coercive field, Bc ∼ 0.6 T, the
external field at which the two curves rejoin, places a
lower bound for the hyperfine coefficient, A ≥ gµBBc ∼
0.7 × 10−4 eV (equality corresponding to full polariza-
tion), independent of the value inferred from the width
of the leakage current peak around zero field (Fig. 3c).
If we instead use the value of A inferred from the cur-
rent peak width (Fig. 3c), the size of Bc implies a ∼ 50%
polarization for the data in Fig. 4a. Hysteresis is not
observed for non-spin-blockaded transport in the 13C de-
vices and is not observed in the 12C devices, suggesting
that this effect cannot be attributed to sources such as
the Fe catalyst particles or interaction with nuclei in the
substrate or gate oxide.

Figure 4b shows that the induced nuclear polarization
persists for ∼ 10 minutes, two orders of magnitude longer
than similar processes in GaAs double dots31. The long
relaxation time indicates that nuclear spin diffusion is

13C12C

See Also
Expt:

Koppens, Folk, et al. (GaAs)
Science 305, 1346 (2005).

 Theory: 
Jouravlev and Nazarov 
PRL 96, 176804 (2006)
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Figure 3: Contrasting magnetic field dependence of leakage
current for 12C and 13C devices. Leakage current through spin
blockade versus detuning and B|| for (a) 12C and (b) 13C devices.
The vertical axes in a and b are interdot detuning as indicated by
the orange lines in c and d, respectively. In a B|| was swept and
detuning stepped, while in b detuning was swept and B|| stepped.
Bias is−1.5 mV in c and−4 mV in d. e and f show cuts along B|| at
the detunings indicated by the red lines in a and b, respectively.
The fit in e is a Lorentzian with a width of 30 mT, and the fit in f
is to the theory of Jouravlev and Nazarov25, providing a measure
of Bnuc = 6.1 mT.

find that leakage current minima can occur at B|| = 0 in
both 12C and 13C devices, particularly for stronger inter-
dot tunneling. For weaker interdot tunneling, however,
only the 13C devices show maxima of spin-blockade leak-
age at B|| = 0. In all cases, the positive bias (non-spin-
blockade) current shows no appreciable field dependence.

Figure 3e shows spin-blockade leakage current as a
function of B|| at fixed detuning (the detuning value is
shown as a black line in Fig. 3a), along with a best-fit
lorentzian, for the 12C device. The lorentzian form was
not motivated by theory, but appears to fit rather well.
The width of the dip around B|| = 0 increases with in-
terdot tunneling (configuration Fig. 3e has t ∼ 50 µeV,
based on charge-state transition width27). We note that
a comparable zero-field dip in spin-blockade leakage cur-
rent was recently reported in a double dot formed in
an InAs nanowire28, a material system with strong spin-
orbit coupling. In the present system, the zero-field dip
may also be attributable to spin-orbit coupling29, re-
sulting in phonon-mediated relaxation that vanishes at
B|| = 0.

Hyperfine coupling appears to the confined electrons
as an effective local Zeeman field (the Overhauser field)
that fluctuates in time independently in the two dots,
driven by thermal excitation of nuclear spins. The differ-
ence in local Overhauser fields in the two dots will induce
rapid mixing of all two-electron spin states whenever the
applied field is less than the typical difference in fluctuat-
ing Overhauser fields. (At higher fields, only the m = 0
triplet can rapidly mix with the singlet). How hyperfine-
mediated spin mixing translates to a field dependence
of spin-blockade leakage current was investigated exper-
imentally in GaAs devices26, with theory developed by
Jouravlev and Nazarov.25

Field dependence of spin-blockade leakage current for
the 13C device is shown Fig. 3f, along with a theoretical
fit (Eq. (11) of Ref. 25, with a constant background
current added), from which we extract a root mean
square amplitude of fluctuations of the local Overhauser
fields, Bnuc = 6.1 mT. Assuming gaussian distributed
Overhauser fields and uniform coupling, Bnuc is related
to the hyperfine coupling constant A by

gµBBnuc = A/
√

N ∼ 100 µeV

→ A ∼ 100 µeV

where g is the electron g-factor and N is the num-
ber of 13C nuclei in each dot25. Taking N ∼ 3–10 × 105

and g = 2 (see Supplement), yields A ∼ 1–2 × 10−4 eV,
a value that is two orders of magnitude larger than
predicted for carbon nanotubes8 or measured in
fullerenes9.

Signatures of dynamic nuclear polarization provide fur-
ther evidence of a strong hyperfine interaction in 13C dou-
ble dots. Hysteresis in the spin-blockade leakage current
near zero detuning is observed when the magnetic field is
swept over a Tesla-scale range, as shown in Fig. 4a. The
data in Fig. 4 are from the same 13C device as in Fig. 3,
but with the barriers tuned such that cotunneling pro-
cesses provide a significant contribution to the leakage
current.

We interpret the hysteresis in Fig. 4a as resulting from
a net nuclear polarization induced by the electron spin
flips required to circumvent spin blockade30. This nuclear
polarization generates an Overhauser field felt by the
electron spins that opposes B|| once B|| passes through
zero. The value of the coercive field, Bc ∼ 0.6 T, the
external field at which the two curves rejoin, places a
lower bound for the hyperfine coefficient, A ≥ gµBBc ∼
0.7 × 10−4 eV (equality corresponding to full polariza-
tion), independent of the value inferred from the width
of the leakage current peak around zero field (Fig. 3c).
If we instead use the value of A inferred from the cur-
rent peak width (Fig. 3c), the size of Bc implies a ∼ 50%
polarization for the data in Fig. 4a. Hysteresis is not
observed for non-spin-blockaded transport in the 13C de-
vices and is not observed in the 12C devices, suggesting
that this effect cannot be attributed to sources such as
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Figure 3: Contrasting magnetic field dependence of leakage
current for 12C and 13C devices. Leakage current through spin
blockade versus detuning and B|| for (a) 12C and (b) 13C devices.
The vertical axes in a and b are interdot detuning as indicated by
the orange lines in c and d, respectively. In a B|| was swept and
detuning stepped, while in b detuning was swept and B|| stepped.
Bias is−1.5 mV in c and−4 mV in d. e and f show cuts along B|| at
the detunings indicated by the red lines in a and b, respectively.
The fit in e is a Lorentzian with a width of 30 mT, and the fit in f
is to the theory of Jouravlev and Nazarov25, providing a measure
of Bnuc = 6.1 mT.

find that leakage current minima can occur at B|| = 0 in
both 12C and 13C devices, particularly for stronger inter-
dot tunneling. For weaker interdot tunneling, however,
only the 13C devices show maxima of spin-blockade leak-
age at B|| = 0. In all cases, the positive bias (non-spin-
blockade) current shows no appreciable field dependence.

Figure 3e shows spin-blockade leakage current as a
function of B|| at fixed detuning (the detuning value is
shown as a black line in Fig. 3a), along with a best-fit
lorentzian, for the 12C device. The lorentzian form was
not motivated by theory, but appears to fit rather well.
The width of the dip around B|| = 0 increases with in-
terdot tunneling (configuration Fig. 3e has t ∼ 50 µeV,
based on charge-state transition width27). We note that
a comparable zero-field dip in spin-blockade leakage cur-
rent was recently reported in a double dot formed in
an InAs nanowire28, a material system with strong spin-
orbit coupling. In the present system, the zero-field dip
may also be attributable to spin-orbit coupling29, re-
sulting in phonon-mediated relaxation that vanishes at
B|| = 0.

Hyperfine coupling appears to the confined electrons
as an effective local Zeeman field (the Overhauser field)
that fluctuates in time independently in the two dots,
driven by thermal excitation of nuclear spins. The differ-
ence in local Overhauser fields in the two dots will induce
rapid mixing of all two-electron spin states whenever the
applied field is less than the typical difference in fluctuat-
ing Overhauser fields. (At higher fields, only the m = 0
triplet can rapidly mix with the singlet). How hyperfine-
mediated spin mixing translates to a field dependence
of spin-blockade leakage current was investigated exper-
imentally in GaAs devices26, with theory developed by
Jouravlev and Nazarov.25

Field dependence of spin-blockade leakage current for
the 13C device is shown Fig. 3f, along with a theoretical
fit (Eq. (11) of Ref. 25, with a constant background
current added), from which we extract a root mean
square amplitude of fluctuations of the local Overhauser
fields, Bnuc = 6.1 mT. Assuming gaussian distributed
Overhauser fields and uniform coupling, Bnuc is related
to the hyperfine coupling constant A by

gµBBnuc = A/
√

N ∼ 100 µeV

→ A ∼ 100 µeV

where g is the electron g-factor and N is the num-
ber of 13C nuclei in each dot25. Taking N ∼ 3–10 × 105

and g = 2 (see Supplement), yields A ∼ 1–2 × 10−4 eV,
a value that is two orders of magnitude larger than
predicted for carbon nanotubes8 or measured in
fullerenes9.

Signatures of dynamic nuclear polarization provide fur-
ther evidence of a strong hyperfine interaction in 13C dou-
ble dots. Hysteresis in the spin-blockade leakage current
near zero detuning is observed when the magnetic field is
swept over a Tesla-scale range, as shown in Fig. 4a. The
data in Fig. 4 are from the same 13C device as in Fig. 3,
but with the barriers tuned such that cotunneling pro-
cesses provide a significant contribution to the leakage
current.

We interpret the hysteresis in Fig. 4a as resulting from
a net nuclear polarization induced by the electron spin
flips required to circumvent spin blockade30. This nuclear
polarization generates an Overhauser field felt by the
electron spins that opposes B|| once B|| passes through
zero. The value of the coercive field, Bc ∼ 0.6 T, the
external field at which the two curves rejoin, places a
lower bound for the hyperfine coefficient, A ≥ gµBBc ∼
0.7 × 10−4 eV (equality corresponding to full polariza-
tion), independent of the value inferred from the width
of the leakage current peak around zero field (Fig. 3c).
If we instead use the value of A inferred from the cur-
rent peak width (Fig. 3c), the size of Bc implies a ∼ 50%
polarization for the data in Fig. 4a. Hysteresis is not
observed for non-spin-blockaded transport in the 13C de-
vices and is not observed in the 12C devices, suggesting
that this effect cannot be attributed to sources such as
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Figure 3: Contrasting magnetic field dependence of leakage
current for 12C and 13C devices. Leakage current through spin
blockade versus detuning and B|| for (a) 12C and (b) 13C devices.
The vertical axes in a and b are interdot detuning as indicated by
the orange lines in c and d, respectively. In a B|| was swept and
detuning stepped, while in b detuning was swept and B|| stepped.
Bias is−1.5 mV in c and−4 mV in d. e and f show cuts along B|| at
the detunings indicated by the red lines in a and b, respectively.
The fit in e is a Lorentzian with a width of 30 mT, and the fit in f
is to the theory of Jouravlev and Nazarov25, providing a measure
of Bnuc = 6.1 mT.

find that leakage current minima can occur at B|| = 0 in
both 12C and 13C devices, particularly for stronger inter-
dot tunneling. For weaker interdot tunneling, however,
only the 13C devices show maxima of spin-blockade leak-
age at B|| = 0. In all cases, the positive bias (non-spin-
blockade) current shows no appreciable field dependence.

Figure 3e shows spin-blockade leakage current as a
function of B|| at fixed detuning (the detuning value is
shown as a black line in Fig. 3a), along with a best-fit
lorentzian, for the 12C device. The lorentzian form was
not motivated by theory, but appears to fit rather well.
The width of the dip around B|| = 0 increases with in-
terdot tunneling (configuration Fig. 3e has t ∼ 50 µeV,
based on charge-state transition width27). We note that
a comparable zero-field dip in spin-blockade leakage cur-
rent was recently reported in a double dot formed in
an InAs nanowire28, a material system with strong spin-
orbit coupling. In the present system, the zero-field dip
may also be attributable to spin-orbit coupling29, re-
sulting in phonon-mediated relaxation that vanishes at
B|| = 0.

Hyperfine coupling appears to the confined electrons
as an effective local Zeeman field (the Overhauser field)
that fluctuates in time independently in the two dots,
driven by thermal excitation of nuclear spins. The differ-
ence in local Overhauser fields in the two dots will induce
rapid mixing of all two-electron spin states whenever the
applied field is less than the typical difference in fluctuat-
ing Overhauser fields. (At higher fields, only the m = 0
triplet can rapidly mix with the singlet). How hyperfine-
mediated spin mixing translates to a field dependence
of spin-blockade leakage current was investigated exper-
imentally in GaAs devices26, with theory developed by
Jouravlev and Nazarov.25

Field dependence of spin-blockade leakage current for
the 13C device is shown Fig. 3f, along with a theoretical
fit (Eq. (11) of Ref. 25, with a constant background
current added), from which we extract a root mean
square amplitude of fluctuations of the local Overhauser
fields, Bnuc = 6.1 mT. Assuming gaussian distributed
Overhauser fields and uniform coupling, Bnuc is related
to the hyperfine coupling constant A by

gµBBnuc = A/
√

N ∼ 100 µeV

→ A ∼ 100 µeV

where g is the electron g-factor and N is the num-
ber of 13C nuclei in each dot25. Taking N ∼ 3–10 × 105

and g = 2 (see Supplement), yields A ∼ 1–2 × 10−4 eV,
a value that is two orders of magnitude larger than
predicted for carbon nanotubes8 or measured in
fullerenes9.

Signatures of dynamic nuclear polarization provide fur-
ther evidence of a strong hyperfine interaction in 13C dou-
ble dots. Hysteresis in the spin-blockade leakage current
near zero detuning is observed when the magnetic field is
swept over a Tesla-scale range, as shown in Fig. 4a. The
data in Fig. 4 are from the same 13C device as in Fig. 3,
but with the barriers tuned such that cotunneling pro-
cesses provide a significant contribution to the leakage
current.

We interpret the hysteresis in Fig. 4a as resulting from
a net nuclear polarization induced by the electron spin
flips required to circumvent spin blockade30. This nuclear
polarization generates an Overhauser field felt by the
electron spins that opposes B|| once B|| passes through
zero. The value of the coercive field, Bc ∼ 0.6 T, the
external field at which the two curves rejoin, places a
lower bound for the hyperfine coefficient, A ≥ gµBBc ∼
0.7 × 10−4 eV (equality corresponding to full polariza-
tion), independent of the value inferred from the width
of the leakage current peak around zero field (Fig. 3c).
If we instead use the value of A inferred from the cur-
rent peak width (Fig. 3c), the size of Bc implies a ∼ 50%
polarization for the data in Fig. 4a. Hysteresis is not
observed for non-spin-blockaded transport in the 13C de-
vices and is not observed in the 12C devices, suggesting
that this effect cannot be attributed to sources such as
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Hysteresis in 13C leakage current
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Figure 4: Hysteresis and fluctuations in leakage current.
a, The spin-blockade leakage current for a 13C device measured
for B|| decreasing, blue trace (increasing, red trace), after waiting
at +1 T (−1 T) for 10 minutes, shows hysteresis on a field scale
> 0.5 T. The sweep rate for both traces is 0.4 mT/s. b, Decay of
leakage current over time measured by stopping a downward sweep
at −0.25 T. The fit is to an exponential decay with a time con-
stant of 9 min. c, Dependence of leakage current on B|| near zero

detuning in a second 13C device. The leakage current fluctuates
over time at some values of B||, while remaining steady at others
(insets).

extremely slow, due both to the one-dimensional geome-
try of the nanotube and material mismatch between the
nanotube and its surroundings. Field and occupancy de-
pendence of relaxation were not measured.

Large fluctuations in Idd are seen at some values of
magnetic field, but not at others (Fig. 4c), similar to be-
havior observed in GaAs devices26. This presumably re-
flects an instability in nuclear polarization that can arise
when polarization or depolarization rates themselves are
polarization dependent32.

A surprising conclusion of this work is that the hy-
perfine coupling constant, A ∼ 1–2 × 10−4 eV, in the
13C devices is much larger than anticipated8,9. It is pos-
sible that the substrate or gate oxide may enhance the
degree of s-orbital content of conduction electrons, thus
strengthening the contact hyperfine coupling. We also
note that a recent theoretical study of electron-nuclear
spin interactions in 13C nanotubes found that the one-
dimensional character of charge carriers renormalized the
effective electron-nuclear interaction by two orders of
magnitude, consistent with the deviation of the measured
value of A from previous theoretical estimates. We note
that a large value of A motivates the fabrication of iso-
topically enriched 12C nanotubes to reduce decoherence
and the use of 13C tubes as a potential basis of electrically
addressable quantum memory.

Methods

Carbon nanotubes are grown by chemical vapor depo-
sition using methane feedstock and 5 nm thick Fe cata-
lyst islands on degenerately doped Si substrates with 1
µm thermal oxide. 12C devices are grown with methane
containing natural abundance (1.1%) 13C; 13C devices
are grown with 99% 13CH4 (Sigma-Aldrich). Nanotubes
are located after growth using a scanning electron micro-
scope, and catalyst islands, source and drain electrodes
(15 nm Pd), and top-gates (30 nm Al) are patterned us-
ing electron-beam lithography. After contacting with Pd,
samples are coated with a noncovalent functionalization
layer combining NO2 and trimethylaluminum, followed
by atomic layer deposition (ALD) of a 30 nm Al2O3

top-gate insulator (Cambridge Nanotech Savannah ALD
system)34,35. Measurements were performed in a dilu-
tion refrigerator with a base temperature of 30 mK and
electron temperature of ∼ 120 mK, determined from the
charge sensing transition width27. Nanotubes presented
in Figs. 1 and 2 have small bandgaps (Eg ∼ 25 meV);
the 13C nanotube in Fig. 3b,d,f and the other 12C nan-
otube (data not shown) are large-gap semiconducting
nanotubes. Charges occupying the dots and leads are
electrons, except the data in Fig. 3b,d,f, where the charge
carriers are holes.

1 A. V. Khaetskii, D. Loss, and L. Glazman. Electron spin
decoherence in quantum dots due to interaction with nu-
clei. Phys. Rev. Lett. 88, 186802 (2002).

2 J. R. Petta et al. Coherent manipulation of coupled elec-
tron spins in semiconductor quantum dots. Science 309,
2180 (2005).
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Relaxation and dephasing in a two-electron 13C nanotube double quantum dot

H. O. H. Churchill, F. Kuemmeth, E. I. Rashba, J. W. Harlow, A. J. Bestwick,
C. Stwertka, T. Taychatanapat, S. K. Watson∗ and C. M. Marcus†

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

We use charge sensing measurements of a spin-blockaded two-electron 13C nanotube double quan-
tum dot to measure relaxation and dephasing times. The relaxation time is found to be longest
at zero magnetic field and goes through a minimum in a parallel field of 1.4 T. We associate these
results with the spin-orbit modified electronic spectrum of carbon nanotubes, which allows phonon
mediated relaxation and suppresses hyperfine mediated relaxation. We find that dephasing occurs
on time-scales in fair agreement with the hyperfine coupling strength in 13C nanotubes.

Few-electron double quantum dots have enabled the
coherent manipulation and detection of individual and
coupled electron spin states required to form qubits [1–
4], so far only in GaAs dots for which hyperfine cou-
pling dominates decoherence. Although recent protocols
mitigate decoherence due to nuclei [5, 6], an attractive
alternative is to base spin qubits on group IV elements
which primarily comprise isotopes free of nuclear spins.
Progress in this direction includes double quantum dots
in Si/SiGe 2DEGs [7], P donors in Si [8], Ge/Si nanowires
[9], and carbon nanotubes [10]. Recent advances in nan-
otube double dots include observation of singlet-triplet
physics [11] and spin blockade [12]. Developing these sys-
tems as spin qubits depends crucially on understanding
their modes of relaxation and dephasing.

This Letter reports measurements of spin relaxation
and dephasing times in a two-electron 13C nanotube dou-
ble quantum dot, enabled by fast pulses applied to elec-
trostatic gates combined with charge sensing measure-
ments in the spin blockade regime. The spin relaxation
time, T1, is longest at zero magnetic field and displays a
minimum in a parallel field of 1.4 T. We interpret these
results within the context of the recently observed spin-
orbit interaction in carbon nanotubes [13, 14]. Finally,
we argue that the 13C nuclear spins do not contribute
to relaxation, but lead to rapid dephasing, T ∗

2 , via the
strong hyperfine coupling observed recently [15].

The double dot studied here is based on a single-walled
carbon nanotube grown by chemical vapor deposition us-
ing 99% 13CH4 feedstock [16, 17]. After deposition of two
pairs of Pd contacts [Fig. 1(a), red], the device is coated
with a 30 nm functionalized Al2O3 top-gate oxide using
atomic layer deposition [18, 19]. Aluminum top-gates
(blue, yellow, and gray) define a double dot between con-
tacts 1 and 2 and a single dot between contacts 3 and 4,
capactively coupled [orange wire in Fig. 1(a)] to the dou-
ble dot to allow charge sensing [9, 20]. The small bandgap
(∼ 25 meV) nanotube is operated in the electron regime.
Direct current and standard lock-in measurements are
carried out in a dilution refrigerator (electron tempera-
ture ∼ 100 mK).

The absolute number of electrons in each dot,
(NL, NR), is unambiguously identified from the conduc-

1 µm

L R
S1

M

V
R

 (
V

)

VL (V)

0.10

0.09

0.08

g  (e /h)2

-2.88

-2.82

-0.14 -0.08

s

(0,0)

(0,1)

(0,2)

(1,1)

(1,0) (2,0)

1

2 3

4

(a)

(b)
S2

FIG. 1: (a), SEM image of the device design. The carbon nanotube
(not visible) runs horizontally under Pd contacts (red). The double
dot is defined by top-gates L, R, and M (blue). On the same
nanotube, a separate quantum dot is controlled with gates S1 and
S2 and capacitively coupled (orange wire) to the double dot to
allow charge sensing. Fast pulses are applied to L and R. (b),
Charge sensor conductance gs measured between contacts 3 and 4
as a function of VL and VR showing the charge stability diagram
that indicates the absolute number of electrons (NL, NR) in each
dot.

tance of the charge sensor, gs. Whenever an electron
is removed from the left or right dot by gate voltages
VL and VR, gs increases in sharp steps [9] until both dots
are empty [Fig. 1(b)]. From the honeycomb pattern we
infer a strong interdot capacitive coupling of ∼ 1 meV.

The lowest electronic states in carbon nanotube quan-
tum dots are described by quantized longitudinal modes,
a real spin and, owing to the valley degeneracy of
graphene, an isospin (clockwise or counterclockwise or-
bital motion around the nanotube circumference) [21].
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Levels in a single dot, including spin-orbit coupling and 
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independent of the details of the electron trajectory. In the presence
of atomic spin–orbit coupling a constant phase accumulates during
each rotation, which can therefore be described by a spin-dependent
topological flux, SjjwSO, passing through the nanotube cross-section
(Sjj511/21 for spin moment parallel/antiparallel to the nanotube
axis). This flux modifies the quantization condition of the wave-
function around the circumference:

k\pd?k\pd{2p Sjj wSO=w0 ð1Þ

where k\ is the electron’s wave vector in the circumferential direction
asmeasured from theK andK9 points, d is the tube diameter and w0 is

the flux quantum. According to the theory in ref. 12 the flux is given
by

wSO~
Dat

12eps
5z3

V s
pp

V p
pp

 !
w0<10{3w0 ð2Þ

where eps is the energy splitting of the p and s bands in graphene and
V s
pp, V

p
pp are the hopping elements within these bands. This flux does

not depend on the geometrical properties of the nanotube such as its
diameter or the shape of its cross-section, signifying its topological
origin.

Figure 4b illustrates the consequences of the modified quantiza-
tion conditions for a small-bandgap tube at Bjj5 0. Near each Dirac
cone (K and K9) there are two quantization lines for the two spin
directions (dashed lines). Combining equation (1) with the linear
dispersion, and including the Aharonov–Bohm flux induced by Bjj,
wAB5Bjjpd

2/4, and the Zeeman spin coupling, the energies are

E~+BvF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Here vF is the Fermi velocity, kjj is the wave vector parallel to the
nanotube axis, andk\,0~+Egap=2BvF accounts for the small bandgap,
Egap, at zero magnetic field (the opposite signs are for the K9 and K
points). The resulting energy spectrum is schematically shown in
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Figure 2 | Excited-state spectroscopy of a single electron in a nanotube
dot. a, Differential conductance, G5 dI/dVsd, measured as function of gate
voltage, Vg, and source–drain bias, Vsd, at Bjj 5 300mT, displaying
transitions from zero to one electron in the dot. b, A line cut at
Vsd521.9mV reveals four energy levels a, b, c and d as well as another peak
w corresponding to the edge of the one-electron Coulomb diamond.
c, G5 dI/dVsd as a function of Vg and Bjj at a constant bias Vsd522mV.
The resonances a, b, c, d andw are indicated. The energy scale on the right is
determined by scaling DVg with the conversion factor a5 0.57 extracted
from the slopes in a. Inset: orbital and spin magnetic moments assigned to
the observed states. d, Extracted energy splitting between the states a and b
as a function of Bjj (dots). The linear fit (red line) gives a Zeeman splitting
with g5 2.146 0.1, and a zero-field splitting of DSO5 0.376 0.02meV
(error bars, 1 s.d.). e, Magnified view of panel c showing the zero-field
splitting due to spin–orbit interaction (DSO) as well as finite-field
anticrossing due to K–K9 mixing (DKK9). Dashed lines show the calculated
spectrum using DKK95 65 meV.
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Figure 3 | The many-electron ground states and their explanation by spin-
orbit interaction. a, G5dI/dVsd, measured as a function of gate voltage,Vg,
and magnetic field, Bjj, showing Coulomb blockade peaks (carrier addition
spectra) for the first four electrons and the first two holes (data are offset inVg

for clarity). b, Incorrect interpretation of the addition spectrum shown in
a using a model with exchange interactions between electrons. Dashed/solid
lines represent addition of down/up spin moments. The two-electron ground
state at low fields, indicated at the left, is a spin triplet. c, Comparison of the
measured two-electron addition energy fromawith theone-electronexcitation
spectrum from Fig. 2e. d, Schematic explanation of the data in a using
electronic stateswith spin–orbit coupling: The two-electron ground state at low
fields, indicated on the left, is neither a spin-singlet nor a spin-triplet state.
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independent of the details of the electron trajectory. In the presence
of atomic spin–orbit coupling a constant phase accumulates during
each rotation, which can therefore be described by a spin-dependent
topological flux, SjjwSO, passing through the nanotube cross-section
(Sjj511/21 for spin moment parallel/antiparallel to the nanotube
axis). This flux modifies the quantization condition of the wave-
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Figure 4b illustrates the consequences of the modified quantiza-
tion conditions for a small-bandgap tube at Bjj5 0. Near each Dirac
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Here vF is the Fermi velocity, kjj is the wave vector parallel to the
nanotube axis, andk\,0~+Egap=2BvF accounts for the small bandgap,
Egap, at zero magnetic field (the opposite signs are for the K9 and K
points). The resulting energy spectrum is schematically shown in
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Figure 2 | Excited-state spectroscopy of a single electron in a nanotube
dot. a, Differential conductance, G5 dI/dVsd, measured as function of gate
voltage, Vg, and source–drain bias, Vsd, at Bjj 5 300mT, displaying
transitions from zero to one electron in the dot. b, A line cut at
Vsd521.9mV reveals four energy levels a, b, c and d as well as another peak
w corresponding to the edge of the one-electron Coulomb diamond.
c, G5 dI/dVsd as a function of Vg and Bjj at a constant bias Vsd522mV.
The resonances a, b, c, d andw are indicated. The energy scale on the right is
determined by scaling DVg with the conversion factor a5 0.57 extracted
from the slopes in a. Inset: orbital and spin magnetic moments assigned to
the observed states. d, Extracted energy splitting between the states a and b
as a function of Bjj (dots). The linear fit (red line) gives a Zeeman splitting
with g5 2.146 0.1, and a zero-field splitting of DSO5 0.376 0.02meV
(error bars, 1 s.d.). e, Magnified view of panel c showing the zero-field
splitting due to spin–orbit interaction (DSO) as well as finite-field
anticrossing due to K–K9 mixing (DKK9). Dashed lines show the calculated
spectrum using DKK95 65 meV.
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Figure 3 | The many-electron ground states and their explanation by spin-
orbit interaction. a, G5dI/dVsd, measured as a function of gate voltage,Vg,
and magnetic field, Bjj, showing Coulomb blockade peaks (carrier addition
spectra) for the first four electrons and the first two holes (data are offset inVg

for clarity). b, Incorrect interpretation of the addition spectrum shown in
a using a model with exchange interactions between electrons. Dashed/solid
lines represent addition of down/up spin moments. The two-electron ground
state at low fields, indicated at the left, is a spin triplet. c, Comparison of the
measured two-electron addition energy fromawith theone-electronexcitation
spectrum from Fig. 2e. d, Schematic explanation of the data in a using
electronic stateswith spin–orbit coupling: The two-electron ground state at low
fields, indicated on the left, is neither a spin-singlet nor a spin-triplet state.
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Relaxation and dephasing in a two-electron 13C nanotube double quantum dot

H. O. H. Churchill, F. Kuemmeth, E. I. Rashba, J. W. Harlow, A. J. Bestwick,
C. Stwertka, T. Taychatanapat, S. K. Watson∗ and C. M. Marcus†

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

We use charge sensing measurements of a spin-blockaded two-electron 13C nanotube double quan-
tum dot to measure relaxation and dephasing times. The relaxation time is found to be longest
at zero magnetic field and goes through a minimum in a parallel field of 1.4 T. We associate these
results with the spin-orbit modified electronic spectrum of carbon nanotubes, which allows phonon
mediated relaxation and suppresses hyperfine mediated relaxation. We find that dephasing occurs
on time-scales in fair agreement with the hyperfine coupling strength in 13C nanotubes.

Few-electron double quantum dots have enabled the
coherent manipulation and detection of individual and
coupled electron spin states required to form qubits [1–
4], so far only in GaAs dots for which hyperfine cou-
pling dominates decoherence. Although recent protocols
mitigate decoherence due to nuclei [5, 6], an attractive
alternative is to base spin qubits on group IV elements
which primarily comprise isotopes free of nuclear spins.
Progress in this direction includes double quantum dots
in Si/SiGe 2DEGs [7], P donors in Si [8], Ge/Si nanowires
[9], and carbon nanotubes [10]. Recent advances in nan-
otube double dots include observation of singlet-triplet
physics [11] and spin blockade [12]. Developing these sys-
tems as spin qubits depends crucially on understanding
their modes of relaxation and dephasing.

This Letter reports measurements of spin relaxation
and dephasing times in a two-electron 13C nanotube dou-
ble quantum dot, enabled by fast pulses applied to elec-
trostatic gates combined with charge sensing measure-
ments in the spin blockade regime. The spin relaxation
time, T1, is longest at zero magnetic field and displays a
minimum in a parallel field of 1.4 T. We interpret these
results within the context of the recently observed spin-
orbit interaction in carbon nanotubes [13, 14]. Finally,
we argue that the 13C nuclear spins do not contribute
to relaxation, but lead to rapid dephasing, T ∗

2 , via the
strong hyperfine coupling observed recently [15].

The double dot studied here is based on a single-walled
carbon nanotube grown by chemical vapor deposition us-
ing 99% 13CH4 feedstock [16, 17]. After deposition of two
pairs of Pd contacts [Fig. 1(a), red], the device is coated
with a 30 nm functionalized Al2O3 top-gate oxide using
atomic layer deposition [18, 19]. Aluminum top-gates
(blue, yellow, and gray) define a double dot between con-
tacts 1 and 2 and a single dot between contacts 3 and 4,
capactively coupled [orange wire in Fig. 1(a)] to the dou-
ble dot to allow charge sensing [9, 20]. The small bandgap
(∼ 25 meV) nanotube is operated in the electron regime.
Direct current and standard lock-in measurements are
carried out in a dilution refrigerator (electron tempera-
ture ∼ 100 mK).

The absolute number of electrons in each dot,
(NL, NR), is unambiguously identified from the conduc-
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FIG. 1: (a), SEM image of the device design. The carbon nanotube
(not visible) runs horizontally under Pd contacts (red). The double
dot is defined by top-gates L, R, and M (blue). On the same
nanotube, a separate quantum dot is controlled with gates S1 and
S2 and capacitively coupled (orange wire) to the double dot to
allow charge sensing. Fast pulses are applied to L and R. (b),
Charge sensor conductance gs measured between contacts 3 and 4
as a function of VL and VR showing the charge stability diagram
that indicates the absolute number of electrons (NL, NR) in each
dot.

tance of the charge sensor, gs. Whenever an electron
is removed from the left or right dot by gate voltages
VL and VR, gs increases in sharp steps [9] until both dots
are empty [Fig. 1(b)]. From the honeycomb pattern we
infer a strong interdot capacitive coupling of ∼ 1 meV.

The lowest electronic states in carbon nanotube quan-
tum dots are described by quantized longitudinal modes,
a real spin and, owing to the valley degeneracy of
graphene, an isospin (clockwise or counterclockwise or-
bital motion around the nanotube circumference) [21].
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Figure 2: (a), Charge sensor conductance gs as a function of
VR and VL around the (1,1)/(0,2) transition. (b), Pulse sequence
used to measure relaxation. Sensor conductance gs is plotted as in
(a), but now with fast pulses E→R→M→E applied, τM = 0.5 µs.
Dashed lines indicate the boundaries between (0,1), (1,1), (0,2),
and (1,2) during step M. Within the ‘pulse triangle’ (solid white
lines), the ground state is (0,2) but tunneling from (1,1) to (0,2)
is blocked for a fraction of the pulse cycles, reducing gs to a value
intermediate between the (1,1) and (0,2) plateaus. In (c) τM is
extended to 5 µs, during which time the blocked states are more
likely to relax to the ground state. (d), Control experiment distin-
guishing spin blockade from small interdot tunnel coupling. The
sequence above is run in reverse, and because (0,2) states tunnel
freely into (1,1), no pulse triangle appears. B|| = 0 in each panel.

capacitance between dots that splits honeycomb vertices
by ∼ 1 meV.

The lowest electronic states in carbon nanotube quan-
tum dots are described by longitudinal wavefunctions, a
real spin and, owing to the valley degeneracy of graphene,
an isospin (clockwise or counterclockwise orbital motion
around the nanotube circumference) [13]. We ignore
higher transverse subbands and assume that spin and
isospin are conserved when tunneling within a nanotube
[14]. Unlike in GaAs which lacks isospin, there are 16
ways to occupy two different longitudinal states with one
electron each, six of which are even-parity states with re-
spect to the longitudinal wavefunction and are the low-
est states of a doubly occupied dot. In the context of
spin blockade in a double quantum dot [15, 16], it is the
ten odd-parity states which are blockaded from tunneling
into any two-electron state which occupies a single longi-
tudinal mode, because the latter is always an even-parity
state. We note that the blockaded states can be spin-
singlets, spin-triplets, or spin-isospin entangled states (if

spin-orbit coupling is present) [17].
To observe relaxation we now focus on the spin-

blockaded (1, 1) → (0, 2) charge transition shown in
Fig. 2(a). Spin blockade originates from a large energy
splitting (∼ 1 meV in these dots [21]) between even- and
odd-parity states in (0,2). An electron that enters an odd
state in (1,1) cannot proceed to (0,2) because the (0,2)
odd state is energetically inaccessible. Spin blockade is
detected by the charge sensor via the cycle of fast gate
pulses depicted in Fig. 2(b) [18]. Starting at E in (0,1),
an electron is loaded into any of the states allowed in
(1,1) by pulsing to R. With the final pulse to M (slow
on the timescale of interdot tunnel coupling), the elec-
tron attempts to tunnel into the (0,2) even-parity ground
state. Whereas (1,1) even states tunnel freely into (0,2)
even states, the (1,1) odd states are spin-blockaded from
making the transition and must first undergo relaxation.

With the pulse cycle E→R→M→E running continu-
ously, VL and VR are swept in the vicinity of (1,1)/(0,2)
[Fig. 2(b)]. Eighty percent of the pulse period is spent
at M (10% each for E and R) so that the time-averaged
sensor signal gs primarily reflects the charge state during
the measurement time, τM. The locations of the ground
state transitions during M (dashed lines) coincide with
those when no pulses are applied. However, within the
pulse triangle outlined in solid white lines, gs lies between
the (1,1) and (0,2) plateaus, indicating that a fraction of
the pulse cycles loads a (1,1) state that is blocked from
relaxing to (0,2) upon pulsing to M. The pulse triangle is
clearly visible for short τM = 0.5 µs [Fig.2(b)], but as τM

approaches the relaxation time, the visibility of the pulse
triangle is reduced as expected [Fig. 2(c)]. Furthermore,
the edges of the pulse triangle disappear faster due to
thermally activated processes [18], but we also observe
faster relaxation within 200 µeV of the base.

To verify that the pulse triangle does not result from
slow interdot tunnel rates, we demonstrate a control ex-
periment with a reversed pulse cycle in Fig. 2(d). Even
for short τM, no pulse triangle appears in (1,1), indicat-
ing that the (0, 2) → (1, 1) transition occurs freely for
any states loaded in (0,2).

We now investigate the dependence of relaxation on
a parallel magnetic field, B||. For small B|| the leakage
current through spin blockade near zero detuning shows
a sharp dip at B|| = 0 which we phenomenologically fit
to a Lorentzian lineshape (FWHM 11 mT). We assume
the leakage current to be proportional to the relaxation
rate, indicating a maximum lifetime at B|| = 0. For the
unblocked bias, the current is independent of a small B||.

The decay of the pulse triangles with increasing τM

[Figs. 2(b), (c)] provides an estimate of relaxation rates
that is more accurate than leakage current because it
does not require precise knowledge of the coupling to the
leads. Figure 3(b) shows the decay of the pulse trian-
gle intensity measured in the center of the triangle as
a function of τM at B|| = 0, 100, and 200 mT, nor-
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B-dependence of relaxation rate
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FIG. 3: (a), Leakage current through blockade near zero detuning
for small B, V 12 = −2 mV. (b), Decay of pulse triangle visibility I
as a function of τM measured in the center of the triangle at several
values of B. (c), dgs/dVL as a function of VL and B, showing
the dependence of ground state energies on B for the first four
electrons on the left dot. (d), Energy level diagram of the lowest
states of a nanotube with spin-orbit coupling; ∆SO = 165 µeV,
∆KK′ = 25 µeV, θ = 5◦, and µorb = 330 µeV/T. Arrows indicate
spin component parallel to the nanotube axis. Schematics indicate
the directions with respect to B of orbital magnetic moment, µorb,
for clockwise (K) and counterclockwise (K′) moving isospin states.
At Borb (Bspin), the orbital (Zeeman) shifts compensate ∆SO and
states with opposite isospin (spin) cross. (e), T1 extracted from fits
to pulse triangle decay for B between 1.1 and 2.0 T. Error bars:
standard deviation of the fit parameter T1. The fit (red curve) is to
the theory of Ref. 14, modified for B misaligned by 5◦ (see text).

moment µorb = 330 µeV/T and a zero-field spin-orbit
splitting ∆SO = 165 µeV. Because the hyperfine cou-
pling is smaller than ∆SO and does not couple opposite
isospins, random Overhauser fields from the 13C nuclei do
not induce relaxation between and within Kramer dou-
blets, justifying the single-exponential model used above.

As a consequence of this spectrum, Bulaev et al. pre-
dict a minimum in T1 when the two K ′ states with op-
posite spin become degenerate at Bspin = ∆SO/gµB =
1.42 T [cf. Fig. 3(d)]. These nontime-conjugate states
are coupled by 1D bending mode phonons, resulting
in T1 ∝

√
splitting for an energy splitting ∆, in con-

trast to relaxation by piezoelectric phonons for which

T1 ∝ ∆−(d+3) in d dimensions [14, 30].
T1 extracted from fits as in Fig. 3(b) but for B between

1.1 and 2 T is shown in Fig. 3(e), where we indeed ob-
serve a minimum in T1 at B ∼ 1.4 T. We fit the data in
Fig. 3(e) (red curve) to the form T1 = C

√
∆θ, where the

splitting ∆θ = gµB

√
(B cos θ −∆SO/gµB)2 + (B sin θ)2

accounts for an anti-crossing due to a small misalignment
angle, θ, of B from the nanotube axis [31]. Using g = 2
and the measured quantities ∆SO and θ (5◦ determined
by SEM), the only free parameter is the overall scale
C = 65 ns/

√
µeV, a factor of ∼ 5 smaller than the nu-

merical estimates in Ref. 14, a difference which could be
contained in the dot length. Attributing the measured T1

to this mechanism requires loading of at least one of the
two higher states of Fig. 3(d) at step R, which is expected
because the levels of the left dot are well below the elec-
trochemical potential of the left lead at R. We note that
relaxation due to nuclei should also be strongest near a
degeneracy [24], but the ratio ∆θ/Enuc % 1 [15] would
require huge inelastic tunnel rates ruled out by transport
measurements to explain the measured T1.

While the spin-orbit interaction affords protection
against relaxation via nuclear spins at B = 0, a difference
in hyperfine fields between the two dots should result in
rapid dephasing. To measure the inhomogeneous dephas-
ing time T ∗

2 of a state at B = 0, the pulse cycle depicted
in Fig. 4(a) first prepares an even (0,2) state at P, then
separates the electrons via P′ into (1,1) at S for a time
τs, and finally measures the return probability to (0,2) at
M [3]. For small τs, the even state does not dephase and
always returns to (0,2), but for τs ! T ∗

2 , the even state
dephases into a blocked odd state and the return prob-
ability is reduced within the pulse triangle [black lines,
Fig. 4(a)]. This sequence is applied with τs = 50 ns as
VL and VR are swept in Fig. 4(b). The pulse triangle
appears clearly, but with reduced visibility for small de-
tunings due to a shorter T1 evident in Fig. 2(c).

The dephasing time is obtained from the value of gs in
the center of the pulse triangle versus τs, which reflects
the probability of return to (0,2) when calibrated against
the equilibrium (1,1) and (0,2) values of gs [Fig. 4(b)].
Assuming a difference in Overhauser fields acting on the
two spins of root mean square strength δB||

nuc parallel
to the nanotube axis [5, 32], the decay is fit to a Gaus-
sian form, giving T ∗

2 = !/gµBδB||
nuc = 3.2 ns. The cor-

responding δB||
nuc = 1.8 mT is a factor of two smaller

than our estimate of the single dot nuclear field Bnuc

in 13C nanotubes [33]. The difference may be due to
anisotropic dipolar hyperfine coupling [34] or to acciden-
tal suppression of δB||

nuc [5]. The saturation value of
the return probability in Fig. 4(c) is 0.17, a factor of
two smaller than expected for singlet-triplet dephasing
at B = 0 [3], likely due to the richer spectrum allowed
by isospin. The fraction of blockaded states (∼ 0.85) for
the T1 experiment in Fig. 2 is similarly higher than ex-

B-dependence of relaxation rate
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FIG. 4: (a), Pulse sequence to measure the dephasing time T ∗
2

(see text). If a state prepared at P dephases into a spin-blockaded
state while separated at S for a time τs, gs is reduced within the
pulse triangle outlined in black (shown in (b) for τP = τP′ = 100
ns, τS = 50 ns and τM = 2 µs at B= 0). (c), gs calibrated to reflect
the return probability to (0,2) versus τs. A Gaussian fit (red) [32]

gives T ∗
2 = 3.2 ns and δB

||
nuc = 1.8 mT. The data points are an

average of 500 individual traces; error bars are the standard error.

Assuming a difference in Overhauser fields acting on the
two spins of root mean square strength δB||

nuc parallel
to the nanotube axis [5, 32], the decay is fit to a Gaus-
sian form, giving T ∗

2 = !/gµBδB||
nuc = 3.2 ns. The cor-

responding δB||
nuc = 1.8 mT is a factor of two smaller

than our estimate of the single dot nuclear field Bnuc

in 13C nanotubes [33]. The difference may be due to
anisotropic dipolar hyperfine coupling [34] or to acciden-
tal suppression of δB||

nuc [5]. The saturation value of
the return probability in Fig. 4(c) is 0.17, a factor of
two smaller than expected for singlet-triplet dephasing
at B = 0 [3], likely due to the richer spectrum allowed
by isospin. The fraction of blockaded states (∼ 0.85) for
the T1 experiment in Fig. 2 is similarly higher than ex-
pected and requires further study. Finally, we note that
the spin-orbit mechanism invoked to explain relaxation is
predicted not to contribute to pure dephasing and there-
fore does not explain the observed short T ∗

2 [14].
In summary, we have measured electron relaxation and

dephasing times in a two-electron 13C nanotube double
quantum dot. We found a unique magnetic field depen-
dence of the relaxation time which we attribute to spin-

orbit coupling, and we observed a spin dephasing time
in fair agreement with the recently observed hyperfine
coupling strength in 13C nanotubes. The short dephas-
ing time motivates development of nanotube devices de-
pleted in 13C below the 1% natural abundance.
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FIG. 4: (a), Pulse sequence to measure the dephasing time T ∗
2

(see text). If a state prepared at P dephases into a spin-blockaded
state while separated at S for a time τs, gs is reduced within the
pulse triangle outlined in black (shown in (b) for τP = τP′ = 100
ns, τS = 50 ns and τM = 2 µs at B= 0). (c), gs calibrated to reflect
the return probability to (0,2) versus τs. A Gaussian fit (red) [32]

gives T ∗
2 = 3.2 ns and δB

||
nuc = 1.8 mT. The data points are an

average of 500 individual traces; error bars are the standard error.

the probability of return to (0,2) when calibrated against
the equilibrium (1,1) and (0,2) values of gs [Fig. 4(b)].
Assuming a difference in Overhauser fields acting on the
two spins of root mean square strength δB||

nuc parallel to
the nanotube axis [5, 32], the decay is fit to a Gaussian
form, giving T ∗

2 = !/gµBδB||
nuc = 3.2 ns. The corre-

sponding δB||
nuc = 1.8 mT ≈ Bnuc/2 is a factor of two

smaller than our estimate of the single dot nuclear field
Bnuc in 13C nanotubes [33]. The difference may be due
to anisotropic dipolar hyperfine coupling [34] or to ac-
cidental suppression of δB||

nuc [5]. The saturation value
of the return probability in Fig. 4(c) is 0.17, a factor of
two smaller than expected for singlet-triplet dephasing
at B = 0 [3], likely due to the richer spectrum allowed
by isospin. The fraction of blockaded states (∼ 0.85) for
the T1 experiment in Fig. 2 is similarly higher than ex-
pected and requires further study. Finally, we note that
the spin-orbit mechanism invoked to explain relaxation is
predicted not to contribute to pure dephasing and there-
fore does not explain the observed short T ∗

2 [14].
In summary, we have measured electron relaxation and

dephasing times in a two-electron 13C nanotube double

quantum dot. We found a unique magnetic field depen-
dence of the relaxation time which we attribute to spin-
orbit coupling, and we observed a spin dephasing time
in fair agreement with the recently observed hyperfine
coupling strength in 13C nanotubes. The short dephas-
ing time motivates development of nanotube devices de-
pleted in 13C below the 1% natural abundance.
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Summary

nanotubes can form gate-controlled 
dots with controlled hyperfine coupling

few-electron regime accessible 
using charge sensing readout

Both many-electron Pauli Blockade 
and two-electron T2* measurements 
indicate large hyperfine coupling in 

nanotubes
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Figure 3: Contrasting magnetic field dependence of leakage
current for 12C and 13C devices. Leakage current through spin
blockade versus detuning and B|| for (a) 12C and (b) 13C devices.
The vertical axes in a and b are interdot detuning as indicated by
the orange lines in c and d, respectively. In a B|| was swept and
detuning stepped, while in b detuning was swept and B|| stepped.
Bias is−1.5 mV in c and−4 mV in d. e and f show cuts along B|| at
the detunings indicated by the red lines in a and b, respectively.
The fit in e is a Lorentzian with a width of 30 mT, and the fit in f
is to the theory of Jouravlev and Nazarov25, providing a measure
of Bnuc = 6.1 mT.

find that leakage current minima can occur at B|| = 0 in
both 12C and 13C devices, particularly for stronger inter-
dot tunneling. For weaker interdot tunneling, however,
only the 13C devices show maxima of spin-blockade leak-
age at B|| = 0. In all cases, the positive bias (non-spin-
blockade) current shows no appreciable field dependence.

Figure 3e shows spin-blockade leakage current as a
function of B|| at fixed detuning (the detuning value is
shown as a black line in Fig. 3a), along with a best-fit
lorentzian, for the 12C device. The lorentzian form was
not motivated by theory, but appears to fit rather well.
The width of the dip around B|| = 0 increases with in-
terdot tunneling (configuration Fig. 3e has t ∼ 50 µeV,
based on charge-state transition width27). We note that
a comparable zero-field dip in spin-blockade leakage cur-
rent was recently reported in a double dot formed in
an InAs nanowire28, a material system with strong spin-
orbit coupling. In the present system, the zero-field dip
may also be attributable to spin-orbit coupling29, re-
sulting in phonon-mediated relaxation that vanishes at
B|| = 0.

Hyperfine coupling appears to the confined electrons
as an effective local Zeeman field (the Overhauser field)
that fluctuates in time independently in the two dots,
driven by thermal excitation of nuclear spins. The differ-
ence in local Overhauser fields in the two dots will induce
rapid mixing of all two-electron spin states whenever the
applied field is less than the typical difference in fluctuat-
ing Overhauser fields. (At higher fields, only the m = 0
triplet can rapidly mix with the singlet). How hyperfine-
mediated spin mixing translates to a field dependence
of spin-blockade leakage current was investigated exper-
imentally in GaAs devices26, with theory developed by
Jouravlev and Nazarov.25

Field dependence of spin-blockade leakage current for
the 13C device is shown Fig. 3f, along with a theoretical
fit (Eq. (11) of Ref. 25, with a constant background cur-
rent added), from which we extract a root mean square
amplitude of fluctuations of the local Overhauser fields,
Bnuc = 6.1 mT. Assuming gaussian distributed Over-
hauser fields and uniform coupling, Bnuc is related to the
hyperfine coupling constant A by gµBBnuc = A/

√
N,

where g is the electron g-factor and N is the number of
13C nuclei in each dot25. Taking N ∼ 3–10 × 105 and
g = 2 (see Supplement), yields A ∼ 1–2 × 10−4 eV, a
value that is two orders of magnitude larger than pre-
dicted for carbon nanotubes8 or measured in fullerenes9.

Signatures of dynamic nuclear polarization provide fur-
ther evidence of a strong hyperfine interaction in 13C dou-
ble dots. Hysteresis in the spin-blockade leakage current
near zero detuning is observed when the magnetic field is
swept over a Tesla-scale range, as shown in Fig. 4a. The
data in Fig. 4 are from the same 13C device as in Fig. 3,
but with the barriers tuned such that cotunneling pro-
cesses provide a significant contribution to the leakage
current.

We interpret the hysteresis in Fig. 4a as resulting from
a net nuclear polarization induced by the electron spin
flips required to circumvent spin blockade30. This nuclear
polarization generates an Overhauser field felt by the
electron spins that opposes B|| once B|| passes through
zero. The value of the coercive field, Bc ∼ 0.6 T, the
external field at which the two curves rejoin, places a
lower bound for the hyperfine coefficient, A ≥ gµBBc ∼
0.7 × 10−4 eV (equality corresponding to full polariza-
tion), independent of the value inferred from the width
of the leakage current peak around zero field (Fig. 3c).
If we instead use the value of A inferred from the cur-
rent peak width (Fig. 3c), the size of Bc implies a ∼ 50%
polarization for the data in Fig. 4a. Hysteresis is not
observed for non-spin-blockaded transport in the 13C de-
vices and is not observed in the 12C devices, suggesting
that this effect cannot be attributed to sources such as
the Fe catalyst particles or interaction with nuclei in the
substrate or gate oxide.

Figure 4b shows that the induced nuclear polarization
persists for ∼ 10 minutes, two orders of magnitude longer
than similar processes in GaAs double dots31. The long
relaxation time indicates that nuclear spin diffusion is
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