Spin Blockade, Spin Relaxation and Spin Dephasing, in ¹²C and ¹³C Nanotubes

C. M. Marcus Harvard University

Hugh Churchill Ferdinand Kuemmeth

Andrew Bestwick Jennifer Harlow Patrick Herring Christian Barthel David Reilly

Theory:

Karsten Flensberg (NBI Copenhagen) Emmanuel Rashba (Harvard) Support: NSF, Harvard NSEC, ARO/iARPA, DoD, Harvard CNS

Spin Blockade in a Double Dot

S

S

S

Monday, June 22, 2009

S

Control and Detection of Singlet-Triplet Mixing in a Random Nuclear Field

F. H. L. Koppens,^{1*} J. A. Folk,^{1*} J. M. Elzerman,¹ R. Hanson,¹
L. H. Willems van Beveren,¹ I. T. Vink,¹ H. P. Tranitz,²
W. Wegscheider,² L. P. Kouwenhoven,¹ L. M. K. Vandersypen¹[†]

26 AUGUST 2005 VOL 309 SCIENCE

Resonant peak

Inelastic

transport

 V_{t} (mV)

-100

-200

4

200

Coulomb

blockade

Α

300

Inhomogeneous Dephasing

the situation in GaAs

Monday, June 22, 2009

Carbon nanotubes

• CVD growth with 99% ¹²CH₄ or 99% ¹³CH₄

• Pd contacts

Pd contacts

• NO_2 + $AI_2O_3 ALD$

Pd contacts

• $AI_2O_3 + NO_2 ALD$ • Al top gates

10 -10

metallic

0

Backgate (V)

10

0.0-<u>|</u> -10

small gap

0 Backgate (V)

• CVD growth with ¹²CH₄ or ¹³CH₄

• Fe catalyst

Pd contacts

• $AI_2O_3 + NO_2 ALD$

Al top gates

Related work

Biercuk et al. Nano Lett. (2005) DQDs: Sapmaz et al., Nano Lett. (2006)

Graeber et al. PRB (2006) Jorgensen et al. Nat. Phys. (2008)

Single dot charge sensing: Biercuk et al. PRB (2006)

Monday, June 22, 2009

¹³CH₄: Liu and Fan, JACS (2001) NO₂: Farmer and Gordon, Nano Lett. (2006) Williams et al., Science (2007)

• CVD growth with ¹²CH₄ or ¹³CH₄

• Fe catalyst

Pd contacts

• $AI_2O_3 + NO_2 ALD$

Al top gates

Related work

Biercuk et al. Nano Lett. (2005) DQDs: Sapmaz et al., Nano Lett. (2006)

Graeber et al. PRB (2006) Jorgensen et al. Nat. Phys. (2008)

Single dot charge sensing: Biercuk et al. PRB (2006)

Monday, June 22, 2009

¹³CH₄: Liu and Fan, JACS (2001) NO₂: Farmer and Gordon, Nano Lett. (2006) Williams et al., Science (2007)

• CVD growth with ¹²CH₄ or ¹³CH₄

• $AI_2O_3 + NO_2 ALD$

Al top gates

Related work

Biercuk et al. Nano Lett. (2005) DQDs: Sapmaz et al., Nano Lett. (2006)

Graeber et al. PRB (2006) Jorgensen et al. Nat. Phys. (2008)

Single dot charge sensing: Biercuk et al. PRB (2006)

Monday, June 22, 2009

¹³CH₄: Liu and Fan, JACS (2001) NO₂: Farmer and Gordon, Nano Lett. (2006) Williams et al., Science (2007)

Tunable double dot

¹³C spin blockade

H. O. H. Churchill, et al. Nature Physics 5, 321 (2009).

¹³C spin blockade

Magnetic field dependence of spin relaxation

Hysteresis in ¹³C leakage current

Charge sensing

double dot charges 'gate' sensor dot

Charge sensing

double dot charges 'gate' sensor dot

¹³C Nanotube Double Dot with Integrated Charge Sensor

Few-Electron Regime

H. O. H. Churchill, et al. Phys. Rev. Lett. **102** 1066802 (2009).

Levels in a single dot

Levels in a single dot, including spin-orbit coupling

Levels in a single dot, including spin-orbit coupling

Levels in a single dot, including spin-orbit coupling and valley mixing

Levels in a single dot, including spin-orbit coupling, valley mixing, and misaligned field

Levels in a single dot, including spin-orbit coupling, valley mixing, and misaligned field 2 $\Delta_{SO} = 0.17 \text{ meV}$ 0.6 0.4 $\Delta_{KK'} = 0.02 \text{ meV}$ 0.2 (me/ uorb 1 Θ=5° Ш 0 -0.2 Energy (meV) -0.2 0.2 0 B_{\parallel} (T) See Also Kuemmeth, llani et al. Nature 452, 448 (2008) orb Κ -1 $-2 \stackrel{{\scriptstyle \square}}{=} 0.0$ 0.5 1.0 1.5 2.0 2.5 3.0 B (tesla)

Levels in a single dot

H. O. H. Churchill, et al. Phys. Rev. Lett. **102** 1066802 (2009).

Pauli blockade in carbon nanotube double dot despite spin-orbit coupling

- $(|R\rangle|L\rangle |L\rangle|R\rangle) \otimes (|K'\uparrow\rangle|K\downarrow\rangle + |K\downarrow\rangle|K'\uparrow\rangle)$
- $(|R\rangle|L\rangle |L\rangle|R\rangle) \otimes |K\rangle|K\rangle \otimes \mathbf{T}_{-}$
- $(|R\rangle|L\rangle + |L\rangle|R\rangle) \otimes (|K'\uparrow\rangle|K\downarrow\rangle |K\downarrow\rangle|K'\uparrow\rangle)$

lowest two-particle states have different spin & valley symmetries

B-dependence of relaxation rate

Charge sensing

0.095

0.085

Transport

B-dependence of relaxation rate

Inhomogeneous Dephasing

Summary

nanotubes can form gate-controlled dots with controlled hyperfine coupling

few-electron regime accessible using charge sensing readout

Both many-electron Pauli Blockade and two-electron T2* measurements indicate large hyperfine coupling in nanotubes