CONTINUOUS MONITORING OF A SUPERCONDUCTING QUBIT

IRFAN SIDDIQI

Quantum Nanoelectronics Laboratory

Physics Department, UC Berkeley Materials Sciences Division, LBNL

Collège de France Seminar May 31, 2011

United by our desire to implement quantum machines...

AN INDUSTRY BUILT ON SAND...

Bardeen, Brattain, Shockley

1956 Nobel Prize

HOW TO MAKE A CIRCUIT QUANTUM?

Atomic states

Atom

Electrical Circuit

QUANTUM LC OSCILLATOR

JOSEPHSON JUNCTION: "LOSS-LESS" NONLINEAR INDUCTOR

 $I = I_0 \sin \delta$

$$V = \frac{\hbar}{2e} \frac{\partial \delta}{\partial t}$$

SUPERCONDUCTING TRANSMON QUBIT

$$\omega_{01} \simeq \frac{1}{\sqrt{L_J C}}$$

 $\omega_{01} \neq \omega_{12}$

- Tunable qubit frequency
- Sufficient anharmonicity

TRANSMON QUBIT

HOW TO MEASURE THIS ARTIFICIAL ATOM?

DISPERSIVE MEASUREMENT: ATOM ON A LOADED SPRING

MEASUREMENT OSCILLATOR: SPRING (no amplitude dispersion)

NONLINEAR DISPERSIVE MEASUREMENT: ATOM ON A PENDULUM

ATOM LIKE SYSTEM MEASUREMENT OSCILLATOR (with amplitude dispersion)

Frequency changes with quantum state **and** the oscillation amplitude!

CLASSICAL & QUANTUM JOSEPHSON OSCILLATORS

PERIODIC DRIVE: DYNAMICAL BIFURCATION

Single-shot qubit readout in circuit quantum electrodynamics

François Mallet, Florian R. Ong, Agustin Palacios-Laloy, François Nguyen, Patrice Bertet, Denis Vion* and Daniel Esteve

GAIN ISN'T EVERYTHING IN QUANTUM MECHANICS

DIFFERENT QUBITS READOUT WITH A NONLINEAR OSCILLATOR

→ DIFFERENT LEVELS OF FIDELITY

SINGLE STAGE READOUT: COMBINED MEASURE AND RECORD FUNCTIONS

(probe with large photon number \overline{n} to access nonlinearity in low Q system)

HIGHLY EXCITED OSCILLATOR COUPLED TO QUBIT → RELAXATION (DEGREE VARIES WITH QUBIT TYPE)

TWO STAGE READOUT

- QUBIT OSCILLATOR PROBED WITH A FEW PHOTONS
- SUERCONDUCTING PARAMETRIC AMPLIFIER SETS T_{sys}

PERIODIC DRIVE: PARAMP REGIME

PARAMETRIC AMPLIFICATION

$$\omega_{pump} = \omega_{signal} + \omega_{idler}$$
$$2\omega_{pump} = \omega_{signal} + \omega_{idler}$$

EXPERIMENTAL SETUP

QUBIT MEASUREMENTS: HOMODYNE SIGNAL

Amplifier (T_{SYS} = 7K) noise masks qubit state information

SYSTEM NOISE TEMPERATURE

SYSTEM NOISE TEMPERATURE

THE

LONDON, EDINBURGH, AND DUBLIN PHILOSOPHICAL MAGAZINE AND

JOURNAL OF SCIENCE.

and the second s

[SIXTH SERIES.]

JULY 1913.

I. On the Constitution of Atoms and Molecules. By N. BOHR, Dr. phil. Copenhagen*.

SINGLE SHOT MEASUREMENTS

Real time observation of quantum jumps due to spontaneous decay

SINGLE SHOT HISTOGRAMS

State discrimination fidelity > 95-99 %

Single shot fidelity: 70 -90%

JUMP STATISTICS

JUMPS FROM HIGHER QUBIT LEVELS

Paramp in phase insensitive mode

Qubit prepared in firstorycitedistatetate

MEASUREMENT PINNING

Measurement pinning vs. qubit evolution

==> random telegraph signal

QUANTUM JUMPS IN A FLUX QUBIT

 $\bar{n} pprox 10$

$$T_2 = 2 \ \mu s$$

BACKACTION OF THE TANK CIRCUIT

NON-IDEALITIES IN MEASUREMENT

Qubit prepared in ground state

Blue: Ground state White: Excited state

```
\bar{n}\bar{n} \approx 55
```

$\bar{n} \approx 60$ JUMPS WITHOUT PARAMP

π pulse @ 3 µs

QUBIT EXCITATION RATES

Measurement cavity photon occupation

Additional Fast Excitation Line

AVERAGE QUBIT EXCITATION WITH ADDITIONAL FLUX SIGNAL

EXCITATION OBSERVED AT CAVITY DETUNING FREQUENCY

Model for noise upconversion ? (dressed dephasing)

• Measure noise ~ 1 GHz

FUTURE DIRECTIONS

- DRESSED DEPHASING & QUANTUM ZENO
- QUANTUM FEEDBACK/CONTROL
- MULTIPLEXED QUBIT READOUT
- ON-CHIP PARAMP

- BACKACTION OF NONLINEAR TANK CIRCUIT

SCIENCE

Quantum Nanoelectronics Laboratory

S. Weber

- Dr. O. Naaman (Northrop-Grumann) Dr. E. Hoskinson (D-Wave)
- **Dr. R. Vijay** Dr. K. Murch Dr. A. Schmidt
- D.H. Slichter E.M. Levenson-Falk N. Henry C. Macklin N. Antler
- Y.-D. Sun R. Naik A. Narla Z. Minev

OAKLANDIUN