

SUPERCONDUCTORS

Smith *et al*,1960 Anderson & Rowell 1963

SUPERFLUIDS

³He: Avenel & Varoquaux 1987
⁴He: Sukhatme *et al*, 2001

B.E.C.

Cataliotti *et al,* 2001 Albiez *et al,* 2005 Levy *et al,* 2007

1

THE JOSEPHSON JUNCTION

2

SUPERCONDUCTING WEAK LINKS

MESOSCOPIC DESCRIPTION OF THE JOSEPHSON EFFECT

Andreev Bound States

CONDUCTION CHANNELS

Landauer, Büttiker, Martin

Transport as a scattering problem

Collection of independent channels

Generic transport property
$$\rightarrow F(\{\tau_n\},V) = \sum_n f_{1ch}(\tau_n,V)$$

ANDREEV REFLECTION

$\textbf{COUPLING OF } e^{\uparrow} \textbf{ AND } h \downarrow$

for $|\mathbf{E}| < \Delta$ Total Andreev Reflection

$$arg[a(E,\phi)] = \phi + \arccos(E_{\Delta})$$

PHASE BIASED SHORT SINGLE CHANNEL $L < \xi$ $\delta = \phi_{l} - \phi_{R}$

$$\arg\left[a\left(E, \phi_{R}\right)\right] + \arg\left[a\left(E, -\phi_{L}\right)\right] \equiv 0 \left[\mod 2\pi\right]$$

Analogous to Fabry-Pérot (with phase-conjugating perfect mirrors!)

ANDREEV BOUND STATES

in a short ballistic channel ($\tau = 1$)

ANDREEV BOUND STATES

in a short reflective channel ($\tau < 1$)

current carrying bound states

Furusaki, Tsukada (1991) C.W.J. Beenakker

The atomic contact: a model system

System with a few tunable and measurable channels

{\alphi_i} <u>measurement</u>

... requires voltage bias

PHASE BIASING A CONTACT

Small superconducting loop

$$\delta \cong 2\pi \phi/\phi_0 = \phi$$

Small?
$$L \sim \mu_0 d \ll L_J \sim 6 \text{ nH} \implies d \leq 10 \,\mu\text{m}$$

A SUPERCONDUCTING REVERSIBLE SWITCH

"ATOMIC SQUID"

$$\delta - \gamma = \varphi$$

SWITCHING CURRENT OF SQUID

$|(\delta)$ OF ATOMIC CONTACTS

- SUPERCURRENT THROUGH AN ATOM
- WELL DESCRIBED BY ABS PICTURE
- EXPERIMENT PROBES ONLY THE GROUND STATE
- ONLY INDIRECT EVIDENCE FOR UPPER STATE, NO SPECTROSCOPY YET

SUPERCURRENTS IN CNT

Kazumov et al. Science (1999)

Jarillo-Herrero et al. Nature (2006)

SQUID

Cleuziou et al. Nature Nano. (2006)

SETUP FOR TUNNELING SPECTROSCOPY IN CNT

TUNNEL CURRENT

$$I(\mathbf{V}) \propto \int (\mathbf{f}_{P}(\varepsilon - \mathbf{eV}) - \mathbf{f}_{NT}(\varepsilon)) \rho_{NT}(\varepsilon) \rho_{P}(\varepsilon - \mathbf{eV}) d\varepsilon$$

$$g(\varepsilon, \mathbf{V}) = (\mathbf{f}_{NT}(\varepsilon + \mathbf{eV}) - \mathbf{f}_{P}(\varepsilon))\rho_{P}'(\varepsilon) - \mathbf{f}_{P}'(\varepsilon)\rho_{P}(\varepsilon)$$

TUNNELING DENSITY OF STATES (TDOS)

Probe DOS: BCS + small depairing ~ $\Delta/100$

BASIC MODEL

Vecino, Martin-Rodero, Levy-Yeyati, PRB 2003

Quantum dot with **single spin-split leve** + superconducting leads

PREDICTED DOS vs GATE AND SPLITTING

24

COMPARISON WITH THE DATA

depairing in electrodes ~.1 Δ to get linewidth

Loops : Spin-split levels

Identify states of opposite spin coupled by AR : New Spectroscopy

Some adjacent pairs coupled : Need need to enlarge model

TWO DOTS MODEL

Similar to Hermann et al. PRL 2010 Mason et al. Science 2004

INCLUDING COUPLED PAIRS OF LEVELS

FLUX DEPENDENCE

This is a π - junction

• FIRST OBSERVATION OF INDIVIDUAL ABS

• NEW SPECTROSCOPY OF WELL-COUPLED NANOTUBE:

• MOLECULAR LEVELS PERSIST (QUANTUM DOT MODEL VALID)

• SPIN-SPLIT LEVELS

• SPIN RELATION BETWEEN SUCCESSIVE COUPLED LEVELS

• ALL PARAMETERS ACCESSIBLE

PERSPECTIVES

25

¢ mod[2π]

POTENTIAL APPLICATIONS - MAGNETOMETER - SUPERCONDUCTING FET

EXPLORE:

- TRANSITION FROM FABRY-PEROT TO COULOMB BLOCKADE REGIMES
- COMPETITION BETWEEN KONDO EFFECT AND SUPERCONDUCTIVITY

T. Delattre *et al Nature Physics 2009*

- QUBIT ?

- MICROWAVE SPECTROSCOPY

Zazunov et al, PRL 2003

Sköldberg et al, PRL 2008

Quantronics Group, CEA-Saclay

P. BERTET
D. ESTEVE
M. GOFFMAN
P. JOYEZ
P. F. ORFILA
H. POTHIER
P. SENAT
C. URBINA
D. VION

ATOMIC CONTACTS

M. CHAUVIN B. HUARD Q. LE MASNE M. L. DELLA ROCCA

> L. BRETHEAU M. ZGIRSKI

J.D. PILLET C. H. L. QUAY

CNT

Theory collaborators

UAM, Spain

A. LEVY YEYATI

LPS, Orsay & IPhT, Saclay

C. BENA