Quantum transport in single-molecule systems

Jan van Ruitenbeek, Leiden University

College de France, 17 May 2011

Outline

- Introduction
- Basic concepts
- Key experimental techniques single-molecules
- Beyond conductance measurements
 - ➤ thermopower
 - Raman scattering
 - Inelastic signals in conductance
 - ➤ shot noise
- Special topics

Cross-over from PCS to IETS

Future directions, open problems

Ref: Molecular electronics: an introduction to theory and experiment, Juan-Carlos Cuevas and Elke Scheer, World Scientific, 2010

Plastic electronics

- Plastic: usually insulators
- 1977, <u>Alan J. Heeger</u>, <u>Alan G. MacDiarmid</u>, and <u>Hideki Shirakawa</u>: conductive polymers iodine-doped polyacetylene. Nobel Prize in Chemistry in 2000.
- Technology for plastic electronics on thin and flexible plastic substrates was developed at <u>Cambridge University</u>'s <u>Cavendish Laboratory</u> in the 1990s.

Organic solar cells

Mass production at Konarka company, Lowell, MA, USA

Solarmer Energy, El Monte, Ca, USA

Polymer electronics

Engineering molecular properties

a unimolecular zwitterionic rectifier

A. Aviram & M. A. Ratner, *Chem. Phys. Lett Lett.* **29**, 277 (1974) Hindas, July 2010

7

Basic concepts

Standard picture of molecular transport

Resonant transport

Limit of weak coupling:Coulomb blockade

13

Limit of strong coupling: conductance eigenchannels

Incoming waves

Outgoing waves

Matrix of transmission ampl.

$$\vec{o}_r = \hat{t}\vec{i}_l$$

Landauer:

$$G = \frac{2e^2}{h} \operatorname{Tr}(\hat{t}^{\dagger}\hat{t}) = \frac{2e^2}{h} \sum_n T_n$$

Limit of very long molecules: hopping

Break-up of coherence due to Electron-vibration interactions (polarons) or Disorder (intra-molecular tunnelbarriers) plus electron-electron interactions

Distinguishing feature of molecular junctions

In what are molecules different from quantum dots?

Ionic degrees of freedom

Electron-ion interaction signatures in differential conductance heating polaron formation Bias-induced conformational changes

Key experimental techniques

Single-molecules

The principle of the measurements

Techniques for adjusting the gap: STM

Deposition of molecules: self-assembly

Techniques for adjusting the gap: STM

STM on self-assembled monolayers

Stuart Lindsay and his group, Arizona State University, USA Paul Weiss and his group, Penn State, USA

28 nm T3,Vt = +0.78V, lt = 10.7pA

UHV-LT-STM: C₆₀

Néel, Kröger, Limot, Frederiksen, Brandbyge, Berndt, PRL 98 (2007) 065502

Techniques for adjusting the gap: STM

Advantages

Imaging + electrical measurements Tip manipulation Versatile and fast (at room temp.)

Drawbacks

Surface preparation requirements Combination LT + UHV complicated Top-contact poorly defined

- C. Joachim et al Phys. Rev. Lett. 74 (1995)2102
- S. Datta et al Phys. Rev. Lett. 79(1997) 2530
- L. A. Bumm et al Science **271** (1996) 1705
- A. Dhirani et al J. Chem. Phys. 106 (1997) 5249
- V. Langlais et al, Phys. Rev. Lett. 83 (1999) 2809
- L. Patrone et al Chem Phys. 281 (2002) 325

Break junction by electromigration

Techniques for adjusting the gap: electromigration break junction

Advantages

stable for extended periods Can be cycled in temperature and field Gate electrode coupling

insulator gate

Drawbacks

Every junction is different Limited statistics no geometric information danger of formation of nanoparticles

H. Park et al, APL 1999 M. Lambert et al., Nanotechnology 2003 Park et al , Nature 407 (2000) 57-60 Liang et al Nature 2002 Park et al Nature 2002 Osorio et al Adv. Mater. 2007

Mechanically Controllable Break Junction

Lithographically fabricated MCBJ

van Ruitenbeek, Alvarez, Piñeyro, Grahmann, Joyez, Devoret, Esteve and Urbina. Rev. Sci. Instrum. **67** (1995) 108 27

Conductance for Au contacts at 4.2 K

Deposition of molecules

Thiol-coupled individual molecules

J. Reichert *et al.*, Phys. Rev. Lett. **88**, 176804 (2002) M.A. Reed *et* al., Science **278**, 252 (1997)

Three terminal molecular junctions

Martin, Smit, van der Zant, and van Ruitenbeek, Nano Lett. **9** (2009), 2940 C.A. Martin, PhD thesis

Techniques for adjusting the gap: mechanically controllable break junction

Advantages

fast and easy, also at low T statistical averaging any metal for electrodes high stability

Drawbacks

no cycling in field or temperature weak gate coupling no geometric information

Muller et al Physica C, 1992 Muller et al PRL 1992 Ruitenbeek et al Rev Sci. Instrum. 1996 Reed et al. Science 1997

Molecules in solution: conductance histograms (room temperature)

33

2D histograms: test clean Au in vacuum

34

Au/OPE3-dithiol

Au/OPE3 monothiol

Alkanedithiols: a model system

Li et al., JACS ASAP, 2008

Systematics of alkane conductance

Akkerman & de Boer, J. Phys.: Condens. Matter 20 (2008) 013001

Can the reproducibility be improved?

Venkataraman et al., Nano Lett. (6) 3, 2006

- compared to thiols the amine-gold bond is weaker
- the low-bias conductance of amines is more clearly defined

Beyond conductance measurements:

Thermopower

Principle of thermopower

 $S \propto \frac{T}{G} \frac{\partial G}{\partial \mu}$

Principle of thermopower

Principle of thermopower

Thermopower

Reddy, Jang, Segalman & Majumdar, Science **315** (2009) 1568

44

Thermopower

Reddy, Jang, Segalman & Majumdar, Science **315** (2009) 1568

Raman scattering

Tokyo, Jan 2011

Ward, Scott, Keane, Halas, & Natelson, J. Phys.: Condens. Matter **20**, 374118 (2008).

Tokyo, Jan 2011

47

Substrate Si 520 cm⁻¹ peak

1590 cm⁻¹ mode

Ward, Scott, Keane, Halas, & Natelson, J. Phys.: Condens. Matter **20**, 374118 (2008).

Tokyo, Jan 2011

48

Ward, Scott, Keane, Halas, & Natelson, J. Phys.: Condens. Matter **20**, 374118 (2008).

Ward, Scott, Keane, Halas, & Natelson, J. Phys.: Condens. Matter **20**, 374118 (2008).

Tokyo, Jan 2011

Advantages of low temperatures

- Junctions can be held stable for days
- Analysis tools available that are only effective at low T
 - * Vibration mode spectroscopy
 - * Shot noise
 - * Superconducting subgap structure
 - * Thermopower
- Interesting effects appear most clearly

Inelastic scattering signals in conductance

- 1. Weakly coupled molecules
- 2. Strongly coupled molecules

Coulomb blockade

Vibration modes in Coulomb blockade

Break junction by electromigration

Park, Park, Lim, Anderson, Alivisatos and McEuan, Nature 407 (2000) 57

Break junction by electromigration

Park, Park, Lim, Anderson, Alivisatos and McEuan, Nature 407 (2000) 57

C₆₀

Break junction by electromigration

Edgar A. Osorio, Kevin O'Neill, Nicolai Stuhr-Hansen, Ole F. Nielsen, Thomas Bjørnholm,and Herre S. J. van der Zant* Adv. Mater. 19 (2007) 281

Inelastic Electron Tunneling Spectroscopy IETS

Volume 17, Number 22

PHYSICAL REVIEW LETTERS

28 November 1966

MOLECULAR VIBRATION SPECTRA BY ELECTRON TUNNELING

R. C. Jaklevic and J. Lambe Scientific Laboratory, Ford Motor Company, Dearborn, Michigan (Received 18 October 1966)

Principle of inelastic electron tunneling spectroscopy

Inelastic Electron Tunneling Spectroscopy

Typically low transmission probability

Stipe et al. Rev. Sci. Inst.70 (1999), 137

Principle of point contact spectroscopy

Deposition of molecules

Dipstick Faraday cage Capillary Heating wire Dipstick Metal junction Copper tube Notch Resistors

Conductance histogram for Pt

Conductance curve for Pt/H₂

65

Conductance histogram for Pt/H₂

Conductance curve for Pt/H₂

Point contact spectrum for Pt/H₂

Modulation: 1 mV, 7 kHz Recording time: 10 s Temperature: 4.2 K

R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, M. van Hemert & JMvR, Nature **419** (2002) 906

Pt-H₂: Frequencies and stretching dependence

D. Djukic, K.S. Thygesen, C. Untiedt, R.H.M. Smit, K.W. Jacobsen and JMvR, Phys. Rev. B, **71** (2005) 161402

69

DFT calculations

Vibrational Frequencies for PtH₂ (PW91)

Vibration modes for Deuterium, Pt–D₂–Pt

The longitudinal mode for Pt-D₂-Pt

DFT calculations

Vibrational Frequencies for PtH₂ (PW91)

Comparison H_2 and D_2

Transmission probablilites from shot noise

Multiple channels and finite temperature

General expression:

$$S_{I} = 2eV \frac{2e^{2}}{h} \operatorname{coth}\left(\frac{eV}{2k_{B}T}\right) \sum_{n} T_{n}(1-T_{n}) + 4k_{B}T \frac{2e^{2}}{h} \sum_{n} T_{n}^{2}$$

V.A. Khlus, Sov. Phys. JETP **66** (1987) 592 G.B. Lesovik, JETP Lett. **49** (1989) 592 M. Büttiker, Phys. Rev. Lett. **65** (1990) 2901

Experimental technique

Noise signal analysis

Shot noise as a function of current, Au atomic contact at $G=1.02 G_0$

Conductance curve for Pt

Shot noise on Pt-D₂ junctions

Special topic:

cross over between IETS and PCS

Appearance of vibration mode features in experiment

H₂O between Pt leads

89

Spectra at high and low conductance for Pt/H₂O

Crossover between PCS and IETS

Inelastic signals in the conductance

L. de la Vega, A. Martín-Rodero, N. Agraït, and A. Levy Yeyati, PRB 73, 075428 (2006)

M. Paulsson, T. Frederiksen, H. Ueba, N. Lorente & M. Brandbyge, Phys. Rev. Lett. 100, 226604 (2008)

R. Avriller and A. Levy Yeyati, Phys. Rev. B **80** (2009) 041309(R)

T.L. Schmidt and . Komnik, Phys. Rev. B **80** (2009) 041307(R)

F. Haupt, T. Novotný, and W. Belzig, Phys.Rev.Lett.**103** (2009) 136601.

The transmission of the conductance channels from shot noise

Cross over between PCS and IETS

Crossover at G~0.55–0.65. The main channel crosses 0.5

O. Tal, M. Krieger, B. Leerink, & JMvR, Phys Rev Lett 100, 196804 (2008)

Increased G by inelastic scattering at T<<1

Reduction of G by inelastic scattering at T=1

Simple argument for cross over at T = 0.5

Outlook

Low-temperature STM

STM: Pealing off a molecule

Pump, Temirov, Neucheva, Soubatch, Tautz, Rohlfing, Cuniberti, Appl. Phys. A **93**, 335 (2008)

Low-temperature STM

Pealing off a molecule

Pump, Temirov, Neucheva, Soubatch, Tautz, Rohlfing, Cuniberti, Appl. Phys. A **93**, 335 (2008) 102

Two-state molecules: memory

Collier, Wong, Belohradsky, Raymo, Stoddart, Kuekes, Williams, & Heath, Tokyo, Jan 2011 Science **285**, 391 (1999). 103

Molecular transport in network arrays

Liao, Bernard, Langer, Schönenberger, Calame, Adv. Mater. **18**, 2444 (2006). van der Molen, *et al.*, Nano Lett. **9**,76 (2009).

Recent result: Molecular Switch

Light controlled conductance switching

S.J. van der Molen, *et al.* Nano Lett. **9**, 76-80 (2009)

Tokyo, Jan 2011

Integration to Si

Wang, Scott, Gergel-Hackett, Hacker, Janes & Richter, Nano Lett. 8 (2008)

Most important challenges

- Can we understand the IV curves?
- Can we make single molecule devices reproducibly? Or can we work our way around it?
- Can we identify polaron effects in conductance?
- Can we understand and control the heat dissipation in molecular devices?
- Can we make a single-molecule diode with sufficient asymmetry for applications?
- Can we make a reliable voltage controlled switch?
- Can we develop a route towards higher level composite molecular structures?
- How to proceed?
- \rightarrow systematic variations in series of molecules
- → Model systems
- → UHV-STM
- → molecule-semiconductor devices
